7,042 research outputs found

    Peculiar Velocity and Deaberration of the Sky

    Full text link
    Recent studies have found the earth's peculiar velocity to be significant in microwave background based tests for compact cosmic topology, and modifications to these tests have been proposed. Tests of non-gaussianity, weak lensing analysis and new tests using improved CMB data will also be sensitive to peculiar velocity. We propose here to simplify matters by showing how to construct a deaberrated CMB map to which any test requiring a Hubble flow viewpoint can be applied without further complication. In a similar manner deaberration can also be applied to object surveys used for example in topological searches and matter distribution analysis. In particular we have produced a revised list of objects with z > 1.0 using the NASA/IPAC Extragalactic Database.Comment: 8 pages, 1 figure, v4 accepted by Ap

    Nuclear Equation of State and Internal Structure of Magnetars

    Get PDF
    Recently, neutron stars with very strong surface magnetic fields have been suggested as the site for the origin of observed soft gamma repeaters (SGRs). We investigate the influence of a strong magnetic field on the properties and internal structure of such strongly magnetized neutron stars (magnetars). The presence of a sufficiently strong magnetic field changes the ratio of protons to neutrons as well as the neutron appearance density. We also study the pion production and pion condensation in a strong magnetic field. We discuss the pion condensation in the interior of magnetars as a possible source of SGRs.Comment: 5 pages with 3 figures, To appear in the Proceedings of the 5th Huntsville Gamma Ray Burst Symposium, Huntsville, Alabama, USA, Oct. 18-22, 199

    Absence of a Lower Limit on Omega_b in Inhomogeneous Primordial Nucleosynthesis

    Full text link
    We show that a class of inhomogeneous big bang nucleosynthesis models exist which yield light-element abundances in agreement with observational constraints for baryon-to-photon ratios significantly smaller than those inferred from standard homogeneous big bang nucleosynthesis (HBBN). These inhomogeneous nucleosynthesis models are characterized by a bimodal distribution of baryons in which some regions have a local baryon-to-photon ratio eta=3*10e-10, while the remaining regions are baryon-depleted. HBBN scenarios with primordial (2H+3He)/H<9*10e-5 necessarily require that most baryons be in a dark or non-luminous form, although new observations of a possible high deuterium abundance in Lyman-alpha clouds may relax this requirement somewhat. The models described here present another way to relax this requirement and can even eliminate any lower bound on the baryon-to-photon ratio.Comment: 13 pages, 2 figures (available upon request by email), plain te

    Stellar Orbits and the Interstellar Gas Temperature in Elliptical Galaxies

    Full text link
    We draw attention to the close relationship between the anisotropy parameter beta(r) for stellar orbits in elliptical galaxies and the temperature profile T(r) of the hot interstellar gas. For nearly spherical galaxies the gas density can be accurately determined from X-ray observations and the stellar luminosity density can be accurately found from the optical surface brightness. The Jeans equation and hydrostatic equilibrium establish a connection between beta(r) and T(r) that must be consistent with the observed stellar velocity dispersion. Purely optical observations of the bright elliptical galaxy NGC 4472 indicate beta(r) < 0.35 within the effective radius. However, the X-ray gas temperature profile T(r) for NGC 4472 requires significantly larger anisotropy, beta = 0.6 - 0.7, about twice the optical value. This strong preference for radial stellar orbits must be understood in terms of the formation history of massive elliptical galaxies. Conversely, if the smaller, optically determined anisotropy is indeed correct, we are led to the important conclusion that the temperature profile T(r) of the hot interstellar gas in NGC 4472 must differ from that indicated by X-ray observations, or that the hot gas is not in hydrostatic equilibrium.Comment: 6 pages (emulateapj5) with 4 figures; accepted by The Astrophysical Journa

    Enhanced Heavy-Element Formation in Baryon-Inhomogeneous Big-Bang Models

    Full text link
    We show that primordial nucleosynthesis in baryon inhomogeneous big-bang models can lead to significant heavy-element production while still satisfying all the light-element abundance constraints including the low lithium abundance observed in population II stars. The parameters which admit this solution arise naturally from the process of neutrino induced inflation of baryon inhomogeneities prior to the epoch of nucleosynthesis. These solutions entail a small fraction of baryons (\le 2\%) in very high density regions with local baryon-to-photon ratio ηh≈10−4\eta^h\approx 10^{-4}, while most baryons are at a baryon-to-photon ratio which optimizes the agreement with light-element abundances. The model would imply a unique signature of baryon inhomogeneities in the early universe, evidenced by the existence of primordial material containing heavy-element products of proton and alpha- burning reactions with an abundance of [Z]∌−6to−4[Z]\sim -6 to -4.Comment: 19 pages in plain Tex, 5 figures (not included) available by fax or mail upon request, ApJ in press, L
    • 

    corecore