55 research outputs found

    Spectral Measures and Generating Series for Nimrep Graphs in Subfactor Theory II: SU(3)

    Get PDF
    We complete the computation of spectral measures for SU(3) nimrep graphs arising in subfactor theory, namely the SU(3) ADE graphs associated with SU(3) modular invariants and the McKay graphs of finite subgroups of SU(3). For the SU(2) graphs the spectral measures distill onto very special subsets of the semicircle/circle, whilst for the SU(3) graphs the spectral measures distill onto very special subsets of the discoid/torus. The theory of nimreps allows us to compute these measures precisely. We have previously determined spectral measures for some nimrep graphs arising in subfactor theory, particularly those associated with all SU(2) modular invariants, all subgroups of SU(2), the torus, SU(3), and some SU(3) graphs.Comment: 38 pages, 21 figure

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Importance of fullerenic active sites in surface modification of carbon black by plasma polymerisation

    Get PDF
    Carbon black is widely used as an active filler in rubber to improve the physical properties. The surface energy of carbon black is high compared to that of various elastomers like Styrene–Butadiene rubber, Butadiene rubber and Ethylene–Propylene Diene rubber. Reducing the surface energy and matching its surface chemistry will aid in compatibilising carbon black with various elastomers. Surface modification of carbon black by plasma polymerisation has been attempted earlier in order to reduce the surface energy of carbon black. These studies have shown that for effective surface modification of carbon black, there should be available a sufficient number of surface active sites. The present paper looks into the possibilities of utilizing the surface activity of a by-product of the production of fullerene, the fullerene soot for its use in a plasma modification process. Thermogravimetric analysis, wetting behaviour with various liquids of known surface tension, time of flight secondary ion mass spectrometry and transmission electron microscopy are used to characterise the carbon black before and after surface modification. The study shows that the fullerenic type structures present on the surface of fullerenic soot act as very active growth sites for the plasma polymer

    Plasma polymerization surface modification of Carbon black and its effect in elastomers

    Get PDF
    Surface modification of carbon black by plasma polymerization was aimed to reduce its surface energy in order to compatibilize the filler with various elastomers. A fullerenic carbon black was used for the modification process. Thermogravimetric analysis, wetting behavior with liquids of known surface tension, TEM and TOF-SIMS were used to characterize the carbon black before and after modification. The state of plasma-coated carbon black in rubber was studied by means of conductivity measurements. The behavior of the modified filler in rubber was studied using the Payne effect and stress/strain properties. The study shows that plasma-coated carbon black results in a better dispersion in different rubber systems than the uncoated version
    • 

    corecore