43 research outputs found

    Comparative analysis of haplotype association mapping algorithms

    Get PDF
    BACKGROUND: Finding the genetic causes of quantitative traits is a complex and difficult task. Classical methods for mapping quantitative trail loci (QTL) in miceuse an F2 cross between two strains with substantially different phenotype and an interval mapping method to compute confidence intervals at each position in the genome. This process requires significant resources for breeding and genotyping, and the data generated are usually only applicable to one phenotype of interest. Recently, we reported the application of a haplotype association mapping method which utilizes dense genotyping data across a diverse panel of inbred mouse strains and a marker association algorithm that is independent of any specific phenotype. As the availability of genotyping data grows in size and density, analysis of these haplotype association mapping methods should be of increasing value to the statistical genetics community. RESULTS: We describe a detailed comparative analysis of variations on our marker association method. In particular, we describe the use of inferred haplotypes from adjacent SNPs, parametric and nonparametric statistics, and control of multiple testing error. These results show that nonparametric methods are slightly better in the test cases we study, although the choice of test statistic may often be dependent on the specific phenotype and haplotype structure being studied. The use of multi-SNP windows to infer local haplotype structure is critical to the use of a diverse panel of inbred strains for QTL mapping. Finally, because the marginal effect of any single gene in a complex disease is often relatively small, these methods require the use of sensitive methods for controlling family-wise error. We also report our initial application of this method to phenotypes cataloged in the Mouse Phenome Database. CONCLUSION: The use of inbred strains of mice for QTL mapping has many advantages over traditional methods. However, there are also limitations in comparison to the traditional linkage analysis from F2 and RI lines. Application of these methods requires careful consideration of algorithmic choices based on both theoretical and practical factors. Our findings suggest general guidelines, though a complete evaluation of these methods can only be performed as more genetic data in complex diseases becomes available

    More than just hormones: H295R cells as predictors of reproductive toxicity

    Get PDF
    AbstractMany of the commonly observed reproductive toxicities associated with therapeutic compounds can be traced to a disruption of the steroidogenic pathway. We sought to develop an in vitro assay that would predict reproductive toxicity and be high throughput in nature. H295R cells, previously validated as having an intact and functional steroidogenic pathway, were treated with 83 known-positive and 79 known-negative proprietary and public-domain compounds. The assay measured the expression of the key enzymes STAR, 3Ξ²HSD2, CYP17A1, CYP11B2, CYP19A1, CYP21A2, and CYP11A1 and the hormones DHEA, progesterone, testosterone, and cortisol. We found that a Random Forest model yielded a receiver operating characteristic area under the curve (ROC AUC) of 0.845, with sensitivity of 0.724 and specificity of 0.758 for predicting in vivo reproductive toxicity with this in vitro assay system

    Tumor suppressor in lung cancer 1 (TSLC1) alters tumorigenic growth properties and gene expression

    Get PDF
    BACKGROUND: Introduction of cDNA or genomic clones of the tumor suppressor in lung cancer 1 (TSLC1) gene into the non-small cell lung cancer line, A549, reverses tumorigenic growth properties of these cells. These results and the observation that TSLC1 is down-regulated in a number of tumors suggest that TSLC1 functions as a critical switch mediating repression of tumorigenesis. RESULTS: To investigate this mechanism, we compared growth properties of A549 with the TSLC1-containing derivative. We found a G1/S phase transition delay in 12.2. Subtractive hybridization, quantitative PCR, and TranSignal Protein/DNA arrays were used to identify genes whose expression changed when TSLC1 was up-regulated. Members of common G1/S phase regulatory pathways such as TP53, MYC, RB1 and HRAS were not differentially expressed, indicating that TSLC1 may function through an alternative pathway(s). A number of genes involved in cell proliferation and tumorigenesis were differentially expressed, notably genes in the Ras-induced senescence pathway. We examined expression of several of these key genes in human tumors and normal lung tissue, and found similar changes in expression, validating the physiological relevance of the A549 and 12.2 cell lines. CONCLUSION: Gene expression and cell cycle differences provide insights into potential downstream pathways of TSLC1 that mediate the suppression of tumor properties in A549 cells

    Histopathologic characterization of the BTBR mouse model of autistic-like behavior reveals selective changes in neurodevelopmental proteins and adult hippocampal neurogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inbred mouse strain BTBR T+ tf/J (BTBR) exhibits behavioral deficits that mimic the core deficits of autism. Neuroanatomically, the BTBR strain is also characterized by a complete absence of the corpus callosum. The goal of this study was to identify novel molecular and cellular changes in the BTBR mouse, focusing on neuronal, synaptic, glial and plasticity markers in the limbic system as a model for identifying putative molecular and cellular substrates associated with autistic behaviors.</p> <p>Methods</p> <p>Forebrains of 8 to 10-week-old male BTBR and age-matched C57Bl/6J control mice were evaluated by immunohistochemistry using free-floating and paraffin embedded sections. Twenty antibodies directed against antigens specific to neurons, synapses and glia were used. Nissl, Timm and acetylcholinesterase (AchE) stains were performed to assess cytoarchitecture, mossy fibers and cholinergic fiber density, respectively. In the hippocampus, quantitative stereological estimates for the mitotic marker bromodeoxyuridine (BrdU) were performed to determine hippocampal progenitor proliferation, survival and differentiation, and brain-derived neurotrophic factor (BDNF) mRNA was quantified by <it>in situ </it>hybridization. Quantitative image analysis was performed for NG2, doublecortin (DCX), NeuroD, GAD67 and Poly-Sialic Acid Neural Cell Adhesion Molecule (PSA-NCAM).</p> <p>Results</p> <p>In midline structures including the region of the absent corpus callosum of BTBR mice, the myelin markers 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and myelin basic protein (MBP) were reduced, and the oligodendrocyte precursor NG2 was increased. MBP and CNPase were expressed in small ectopic white matter bundles within the cingulate cortex. Microglia and astrocytes showed no evidence of gliosis, yet orientations of glial fibers were altered in specific white-matter areas. In the hippocampus, evidence of reduced neurogenesis included significant reductions in the number of doublecortin, PSA-NCAM and NeuroD immunoreactive cells in the subgranular zone of the dentate gyrus, and a marked reduction in the number of 5-bromo-2'-deoxyuridine (BrdU) positive progenitors. Furthermore, a significant and profound reduction in BDNF mRNA was seen in the BTBR dentate gyrus. No significant differences were seen in the expression of AchE, mossy fiber synapses or immunoreactivities of microtubule-associated protein MAP2, parvalbumin and glutamate decarboxylase GAD65 or GAD67 isoforms.</p> <p>Conclusions</p> <p>We documented modest and selective alterations in glia, neurons and synapses in BTBR forebrain, along with reduced neurogenesis in the adult hippocampus. Of all markers examined, the most distinctive changes were seen in the neurodevelopmental proteins NG2, PSA-NCAM, NeuroD and DCX. Our results are consistent with aberrant development of the nervous system in BTBR mice, and may reveal novel substrates to link callosal abnormalities and autistic behaviors. The changes that we observed in the BTBR mice suggest potential novel therapeutic strategies for intervention in autism spectrum disorders.</p

    A Systems Biology Approach Utilizing a Mouse Diversity Panel Identifies Genetic Differences Influencing Isoniazid-Induced Microvesicular Steatosis

    Get PDF
    Isoniazid (INH), the mainstay therapeutic for tuberculosis infection, has been associated with rare but serious hepatotoxicity in the clinic. However, the mechanisms underlying inter-individual variability in the response to this drug have remained elusive. A genetically diverse mouse population model in combination with a systems biology approach was utilized to identify transcriptional changes, INH-responsive metabolites, and gene variants that contribute to the liver response in genetically sensitive individuals. Sensitive mouse strains developed severe microvesicular steatosis compared with corresponding vehicle control mice following 3 days of oral treatment with INH. Genes involved in mitochondrial dysfunction were enriched among liver transcripts altered with INH treatment. Those associated with INH treatment and susceptibility to INH-induced steatosis in the liver included apolipoprotein A-IV, lysosomal-associated membrane protein 1, and choline phosphotransferase 1. These alterations were accompanied by metabolomic changes including reduced levels of glutathione and the choline metabolites betaine and phosphocholine, suggesting that oxidative stress and reduced lipid export may additionally contribute to INH-induced steatosis. Finally, genome-wide association mapping revealed that polymorphisms in perilipin 2 were linked to increased triglyceride levels following INH treatment, implicating a role for inter-individual differences in lipid packaging in the susceptibility to INH-induced steatosis. Taken together, our data suggest that INH-induced steatosis is caused by not one, but multiple events involving lipid retention in the livers of genetically sensitive individuals. This work also highlights the value of using a mouse diversity panel to investigate drug-induced responses across a diverse population

    Quantitative trait locus analysis identifies Gabra3 as a regulator of behavioral despair in mice

    Get PDF
    The Tail Suspension Test (TST), which measures behavioral despair, is widely used as an animal model of human depressive disorders and antidepressant efficacy. In order to identify novel genes involved in the regulation of TST performance, we crossed an inbred strain exhibiting low immobility in the TST (RIIIS/J) with two high-immobility strains (C57BL/6J and NZB/BlNJ) to create two distinct F2 hybrid populations. All F2 offspring (nΒ =Β 655) were genotyped at high density with a panel of SNP markers. Whole-genome interval mapping of the F2 populations identified statistically significant quantitative trait loci (QTLs) on mouse chromosomes (MMU) 4, 6, and X. Microarray analysis of hippocampal gene expression in the three parental strains was used to identify potential candidate genes within the MMUX QTLs identified in the NZB/BlNJΒ Γ—Β RIIIS/J cross. Expression of Gabra3, which encodes the GABAA receptor Ξ±3 subunit, was robust in the hippocampus of B6 and RIIIS mice but absent from NZB hippocampal tissue. To verify the role of Gabra3 in regulating TST behavior in vivo, mice were treated with SB-205384, a positive modulator of the Ξ±3 subunit. SB-205384 significantly reduced TST immobility in B6 mice without affecting general activity, but it had no effect on behavior in NZB mice. This work suggests that GABRA3 regulates a behavioral endophenotype of depression and establishes this gene as a viable new target for the study and treatment of human depression

    Phenotypic Characterization of a Genetically Diverse Panel of Mice for Behavioral Despair and Anxiety

    Get PDF
    Animal models of human behavioral endophenotypes, such as the Tail Suspension Test (TST) and the Open Field assay (OF), have proven to be essential tools in revealing the genetics and mechanisms of psychiatric diseases. As in the human disorders they model, the measurements generated in these behavioral assays are significantly impacted by the genetic background of the animals tested. In order to better understand the strain-dependent phenotypic variability endemic to this type of work, and better inform future studies that rely on the data generated by these models, we phenotyped 33 inbred mouse strains for immobility in the TST, a mouse model of behavioral despair, and for activity in the OF, a model of general anxiety and locomotor activity.We identified significant strain-dependent differences in TST immobility, and in thigmotaxis and distance traveled in the OF. These results were replicable over multiple testing sessions and exhibited high heritability. We exploited the heritability of these behavioral traits by using in silico haplotype-based association mapping to identify candidate genes for regulating TST behavior. Two significant loci (-logp >7.0, gFWER adjusted p value <0.05) of approximately 300 kb each on MMU9 and MMU10 were identified. The MMU10 locus is syntenic to a major human depressive disorder QTL on human chromosome 12 and contains several genes that are expressed in brain regions associated with behavioral despair.We report the results of phenotyping a large panel of inbred mouse strains for depression and anxiety-associated behaviors. These results show significant, heritable strain-specific differences in behavior, and should prove to be a valuable resource for the behavioral and genetics communities. Additionally, we used haplotype mapping to identify several loci that may contain genes that regulate behavioral despair

    Integrative Analysis of Low- and High-Resolution eQTL

    Get PDF
    The study of expression quantitative trait loci (eQTL) is a powerful way of detecting transcriptional regulators at a genomic scale and for elucidating how natural genetic variation impacts gene expression. Power and genetic resolution are heavily affected by the study population: whereas recombinant inbred (RI) strains yield greater statistical power with low genetic resolution, using diverse inbred or outbred strains improves genetic resolution at the cost of lower power. In order to overcome the limitations of both individual approaches, we combine data from RI strains with genetically more diverse strains and analyze hippocampus eQTL data obtained from mouse RI strains (BXD) and from a panel of diverse inbred strains (Mouse Diversity Panel, MDP). We perform a systematic analysis of the consistency of eQTL independently obtained from these two populations and demonstrate that a significant fraction of eQTL can be replicated. Based on existing knowledge from pathway databases we assess different approaches for using the high-resolution MDP data for fine mapping BXD eQTL. Finally, we apply this framework to an eQTL hotspot on chromosome 1 (Qrr1), which has been implicated in a range of neurological traits. Here we present the first systematic examination of the consistency between eQTL obtained independently from the BXD and MDP populations. Our analysis of fine-mapping approaches is based on β€˜real life’ data as opposed to simulated data and it allows us to propose a strategy for using MDP data to fine map BXD eQTL. Application of this framework to Qrr1 reveals that this eQTL hotspot is not caused by just one (or few) β€˜master regulators’, but actually by a set of polymorphic genes specific to the central nervous system

    Evaluating genetic markers and neurobiochemical analytes for fluoxetine response using a panel of mouse inbred strains

    Get PDF
    RationaleIdentification of biomarkers that establish diagnosis or treatment response is critical to the advancement of research and management of patients with depression.ObjectiveOur goal was to identify biomarkers that can potentially assess fluoxetine response and risk to poor treatment outcome.MethodsWe measured behavior, gene expression, and the levels of 36 neurobiochemical analytes across a panel of genetically diverse mouse inbred lines after chronic treatment with water or fluoxetine.ResultsGlyoxylase 1 (GLO1) and guanine nucleotide-binding protein 1 (GNB1) mostly account for baseline anxiety-like and depressive-like behavior, indicating a common biological link between depression and anxiety. Fluoxetine-induced biochemical alterations discriminated positive responders, while baseline neurobiochemical differences differentiated negative responders (p < 0.006). Results show that glial fibrillary acidic protein, S100 beta protein, GLO1, and histone deacetylase 5 contributed most to fluoxetine response. These proteins are linked within a cellular growth/proliferation pathway, suggesting the involvement of cellular genesis in fluoxetine response. Furthermore, a candidate genetic locus that associates with baseline depressive-like behavior contains a gene that encodes for cellular proliferation/adhesion molecule (Cadm1), supporting a genetic basis for the role of neuro/gliogenesis in depression.ConclusionWe provided a comprehensive analysis of behavioral, neurobiochemical, and transcriptome data across 30 mouse inbred strains that has not been accomplished before. We identified biomarkers that influence fluoxetine response, which, altogether, implicate the importance of cellular genesis in fluoxetine treatment. More broadly, this approach can be used to assess a wide range of drug response phenotypes that are challenging to address in human samples.Electronic supplementary materialThe online version of this article (doi:10.1007/s00213-011-2574-z) contains supplementary material, which is available to authorized users
    corecore