4 research outputs found

    Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation

    No full text
    Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein–protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are two major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a Förster resonance energy transfer (FRET)-based tracking system. Using this platform, we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component

    The decrease of DDB2 proteo-probe and 6-4 PP signals over time are nearly identical.

    No full text
    <p>(<b>A</b>) Typical signals after UV damage observed <i>in situ</i> with the DDB2 proteo-probe, an anti-CPD antibody, or an anti-(6-4)PP antibody. Nuclei are delineated based on DAPI staining and using CellProfiler. (<b>B</b>) The DDB2 proteo-probe signal decreases exponentially with time. Average signal per nucleus normalized to signal at 5 minutes. Red dashed curve: one phase exponential decay fit calculated with a non-linear least square method (R<sup>2</sup> = 0.86). (<b>C</b>) The anti-(6-4)PP signal decreases exponentially with time. Average signal per nucleus normalized to signal at 5 minutes. Blue dashed curve: one phase exponential decay fit calculated with a non-linear least square method (R<sup>2</sup> = 0.83). (<b>D</b>) The anti-CPD signal remains constant over a two hour period. Average signal per nucleus normalized to signal at 5 minutes. Black dashed line: linear fit on the α-CPD signal (R<sup>2</sup> = 0.18). (<b>B</b>), (<b>C</b>), and (<b>D</b>): cells were irradiated with UV-C (10 J/m<sup>2</sup>). The average of three replicas is shown. Each replica represents an average of at least 60 cells. Error bars: s.e.m. (<b>E</b>) A single one phase exponential decay model summarizes the kinetic of (6-4)PPs removal <i>in situ</i>. The single model is based on the decay fits obtained with DDB2 proteo-probe and anti-(6-4)PP data. The grey band represents the area enclosing the true decay curve with 99% confidence. The dotted line indicates the predicted half-life (<i>t</i><sub>1/2</sub>) of (6-4)PPs <i>in situ</i> after UV irradiation.</p

    A purified DDB2 protein complex can be used to detect UV-induced DNA damage.

    No full text
    <p>(<b>A</b>) Experimental strategy to prepare the DDB2 proteo-probe. (<b>B</b>) Signal obtained by hybridization of the DDB2 proteo-probe onto fibroblasts with or without damaging treatments. Hybridized DDB2 proteo-probe is revealed by anti-HA immunofluorescence. Nuclei are visualized by DAPI staining. Nuclei are delineated based on DAPI staining and using CellProfiler <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0085896#pone.0085896-Carpenter1" target="_blank">[26]</a>.</p

    The DDB2 proteo-probe recognizes 6-4-photoproducts <i>in vitro</i>.

    No full text
    <p>(<b>A</b>) The DDB2 proteo-probe signal increases linearly with fluence (J/m<sup>2</sup>). Fibroblasts were irradiated with different doses of UV-C. Each point is an average of three replicas. Each replica represents an average of at least 60 cells. Dashed line: linear fit (R<sup>2</sup> = 0.94). Error bars: s.e.m. (<b>B</b>) The DDB2 proteo-probe signal is DNA-dependent. Fibroblasts were irradiated with UV-C (10 J/m<sup>2</sup>), and untreated or treated with DNase. Nuclei are visualized by DAPI staining. (<b>C</b>) The DDB2 proteo-probe signal can be competed with UV-treated plasmid DNA. Fibroblasts and plasmid DNA were irradiated with UV-C (10 J/m<sup>2</sup> and 300 J/m<sup>2</sup>, respectively). The DDB2 proteo-probe was incubated with plasmid DNA prior to hybridization onto irradiated fibroblasts. Dashed line: no plasmid control proteo-probe signal level. Each point is an average of three replicas. Each replica represents an average of at least 400 cells. Error bars: s.e.m. (<b>D</b>) The DDB2 proteo-probe binds preferentially to 6-4-photoproducts [(6-4)PP] over cyclobutane pyrimidine dimers (CPD). The DDB2 proteo-probe was immobilized on agarose beads, and incubated with the DNA restriction fragments of a plasmid containing, or not, a unique lesion [(6-4)PP or CPD]. The average ratio of the amount of lesion-containing over lesion-free DNA fragments bound to the proteo-probe is shown (<i>n</i> = 3). Error bars: s.e.m.</p
    corecore