71 research outputs found
The Superconformal Index of the (2,0) Theory with Defects
We compute the supersymmetric partition function of the six-dimensional (2,0) theory of type AN−1 on S1×S5 in the presence of both codimension two and codimension four defects. We concentrate on a limit of the partition function depending on a single parameter. From the allowed supersymmetric configurations of defects we find a precise match with the characters of irreducible modules of WN algebras and affine Lie algebras of type AN−1.1121sciescopu
Defects and Quantum Seiberg-Witten Geometry
We study the Nekrasov partition function of the five dimensional U(N) gauge theory with maximal supersymmetry on R^4 x S^1 in the presence of codimension two defects. The codimension two defects can be described either as monodromy defects, or by coupling to a certain class of three dimensional quiver gauge theories on R^2 x S^1. We explain how these computations are connected with both classical and quantum integrable systems. We check, as an expansion in the instanton number, that the aforementioned partition functions are eigenfunctions of an elliptic integrable many-body system, which quantizes the Seiberg-Witten geometry of the five-dimensional gauge theory.1133sciescopu
Supersymmetric Casimir Energy and the Anomaly Polynomial
We conjecture that for superconformal field theories in even dimensions, the supersymmetric Casimir energy on a space with topology S1×SD−1 is equal to an equivariant integral of the anomaly polynomial. The equivariant integration is defined with respect to the Cartan subalgebra of the global symmetry algebra that commutes with a given supercharge. We test our proposal extensively by computing the supersymmetric Casimir energy for large classes of superconformal field theories, with and without known Lagrangian descriptions, in two, four and six dimensions.1123sciescopu
Twisted Hilbert spaces of 3d supersymmetric gauge theories
We study aspects of 3d N=2 supersymmetric gauge theories on the product of a line and a Riemann surface. Performing a topological twist along the Riemann surface leads to an effective supersymmetric quantum mechanics on the line. We propose a construction of the space of supersymmetric ground states as a graded vector space in terms of a certain cohomology of generalized vortex moduli spaces on the Riemann surface. This exhibits a rich dependence on deformation parameters compatible with the topological twist, including superpotentials, real mass parameters, and background vector bundles associated to flavour symmetries. By matching spaces of supersymmetric ground states, we perform new checks of 3d abelian mirror symmetry
- …
