30 research outputs found

    Strength Training Prior to Endurance Exercise: Impact on the Neuromuscular System, Endurance Performance and Cardiorespiratory Responses

    Get PDF
    This study aimed to investigate the acute effects of two strength-training protocols on the neuromuscular and cardiorespiratory responses during endurance exercise. Thirteen young males (23.2 ± 1.6 years old) participated in this study. The hypertrophic strength-training protocol was composed of 6 sets of 8 squats at 75% of maximal dynamic strength. The plyometric strength-training protocol was composed of 6 sets of 8 jumps performed with the body weight as the workload. Endurance exercise was performed on a cycle ergometer at a power corresponding to the second ventilatory threshold until exhaustion. Before and after each protocol, a maximal voluntary contraction was performed, and the rate of force development and electromyographic parameters were assessed. After the hypertrophic strength-training and plyometric strength-training protocol, significant decreases were observed in the maximal voluntary contraction and rate of force development, whereas no changes were observed in the electromyographic parameters. Oxygen uptake and a heart rate during endurance exercise were not significantly different among the protocols. However, the time-to-exhaustion was significantly higher during endurance exercise alone than when performed after hypertrophic strength-training or plyometric strength-training (p <0.05). These results suggest that endurance performance may be impaired when preceded by strength-training, with no oxygen uptake or heart rate changes during the exercise

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Effects of diet-induced hypercholesterolemia and gold nanoparticles treatment on peripheral tissues

    No full text
    Cholesterol is a lipid molecule of great biological importance to animal cells. Dysregulation of cholesterol metabolism leads to raised blood total cholesterol levels, a clinical condition called hypercholesterolemia. Evidence has shown that hypercholesterolemia is associated with the development of liver and heart disease. One of the mechanisms underlying heart and liver alterations induced by hypercholesterolemia is oxidative stress. In this regard, in several experimental studies, gold nanoparticles (AuNP) displayed antioxidant properties. We hypothesized that hypercholesterolemia causes redox system imbalance in the liver and cardiac tissues, and AuNP treatment could ameliorate it. Young adult male Swiss mice fed a regular rodent diet or a high cholesterol diet for eight weeks and concomitantly treated with AuNP (2.5 μg/kg) or vehicle by oral gavage. Hypercholesterolemia increased the nitrite concentration and glutathione (GSH) levels and decreased the liver’s superoxide dismutase (SOD) activity. Also, hypercholesterolemia significantly enhanced the reactive oxygen species (ROS) and GSH levels in cardiac tissue. Notably, AuNP promoted the redox system homeostasis, increasing the SOD activity in hepatic tissue and reducing ROS levels in cardiac tissue. Overall, our data showed that hypercholesterolemia triggered oxidative stress in mice’s liver and heart, which was partially prevented by AuNP treatment
    corecore