126 research outputs found

    The value of sorafenib trough levels in patients with advanced hepatocellular carcinoma - a substudy of the SORAMIC trial.

    Get PDF
    Background: Sorafenib for advanced hepatocellular carcinoma (HCC) is dose adjusted by toxicity. Preliminary studies have suggested an association between plasma concentrations of sorafenib and its main metabolite (M2) and clinical outcomes. This study aimed to validate these findings and establish target values for sorafenib trough concentrations.Methods: Patients with advanced HCC were prospectively recruited within a multicenter phase II study (SORAMIC). Patients with blood samples available at trough level were included for this pharmacokinetic (PK) substudy. Trough plasma concentrations of sorafenib and its main metabolite (M2) were associated with sorafenib-related toxicity and overall survival (OS).Results: Seventy-four patients were included with a median OS of 19.7 months (95% CI 16.1-23.3). Patients received sorafenib for a median of 51 weeks (IQR 27-62) and blood samples were drawn after a median of 25 weeks (IQR 10-42). Patients had a median trough concentration of 3217 ng/ml (IQR 2166-4526) and 360 ng/ml (IQR 190-593) with coefficients of variation of 65% and 146% for sorafenib and M2, respectively. Patients who experienced severe sorafenib-related toxicity received a lower average daily dose (551 vs 730 mg/day, p = .003), but showed no significant differences in sorafenib (3298 vs 2915 ng/ml, p = .442) or M2 trough levels (428 vs 283 ng/ml, p = .159). Trough levels of sorafenib or M2 showed no significant association with OS.Conclusions: In patients with advanced HCC treated with sorafenib, the administered dose, trough levels of sorafenib or M2, and clinical outcomes were poorly correlated. Toxicity-adjusted dosing remains the standard for sorafenib treatment

    Population Pharmacokinetics and Dosing Optimization of Ceftazidime in Term Asphyxiated Neonates during Controlled Therapeutic Hypothermia

    Get PDF
    Ceftazidime is an antibiotic commonly used to treat bacterial infections in term neonates undergoing controlled therapeutic hypothermia (TH) for hypoxic-ischemic encephalopathy after perinatal asphyxia. We aimed to describe the population pharmacokinetics (PK) of ceftazidime in asphyxiated neonates during hypothermia, rewarming, and normothermia and propose a population-based rational dosing regimen with optimal PK/pharmacodynamic (PD) target attainment. Data were collected in the PharmaCool prospective observational multicenter study. A population PK model was constructed, and the probability of target attainment (PTA) was assessed during all phases of controlled TH using targets of 100% of the time that the concentration in the blood exceeds the MIC (T.MIC) (for efficacy purposes and 100% T.4×MIC and 100% T.5×MIC to prevent resistance). A total of 35 patients with 338 ceftazidime concentrations were included. An allometrically scaled one-compartment model with postnatal age and body temperature as covariates on clearance was constructed. For a typical patient receiving the current dose of 100 mg/kg of body weight/day in 2 doses and assuming a worst-case MIC of 8 mg/L for Pseudomonas aeruginosa, the PTA was 99.7% for 100% T.MIC during hypothermia (33.7°C; postnatal age [PNA] of 2 days). The PTA decreased to 87.7% for 100% T.MIC during normothermia (36.7°C; PNA of 5 days). Therefore, a dosing regimen of 100 mg/kg/day in 2 doses during hypothermia and rewarming and 150 mg/kg/day in 3 doses during the following normothermic phase is advised. Higher-dosing regimens (150 mg/kg/day in 3 doses during hypothermia and 200 mg/kg/day in 4 doses during normothermia) could be considered when achievements of 100% T.4×MIC and 100% T.5×MIC are desired.</p

    Phase II Feasibility and Biomarker Study of Neoadjuvant Trastuzumab and Pertuzumab With Chemoradiotherapy for Resectable Human Epidermal Growth Factor Receptor 2-Positive Esophageal Adenocarcinoma:TRAP Study

    Get PDF
    PURPOSE: Approximately 15% to 43% of esophageal adenocarcinomas (EACs) are human epidermal growth factor receptor 2 (HER2) positive. Because dual-agent HER2 blockade demonstrated a survival benefit in breast cancer, we conducted a phase II feasibility study of trastuzumab and pertuzumab added to neoadjuvant chemoradiotherapy (nCRT) in patients with EAC. PATIENTS AND METHODS: Patients with resectable HER2-positive EAC received standard nCRT with carboplatin and paclitaxel and 41.4 Gy of radiotherapy, with 4 mg/kg of trastuzumab on day 1, 2 mg/kg per week during weeks 2 to 6, and 6 mg/kg per week during weeks 7, 10, and 13 and 840 mg of pertuzumab every 3 weeks. The primary end point was feasibility, defined as ≥ 80% completion of treatment with both trastuzumab and pertuzumab. An exploratory comparison of survival with a propensity score-matched cohort receiving standard nCRT was performed, as were exploratory pharmacokinetic and biomarker analyses. RESULTS: Of the 40 enrolled patients (78% men; median age, 63 years), 33 (83%) completed treatment with trastuzumab and pertuzumab. No unexpected safety events were observed. R0 resection was achieved in all patients undergoing surgery, with pathologic complete response in 13 patients (34%). Three-year progression-free and overall survival (OS) were 57% and 71%, respectively (median follow-up, 32.1 months). Compared with the propensity score-matched cohort, a significantly longer OS was observed with HER2 blockade (hazard ratio, 0.58; 95% CI, 0.34 to 0.97). Results of pharmacokinetic analysis and activity on [18F]fluorodeoxyglucose positron emission tomography scans did not correlate with survival or pathologic response. Patients with HER2 3+ overexpression or growth factor receptor-bound protein 7 (Grb7) -positive tumors at baseline demonstrated significantly better survival (P = .007) or treatment response (P = .016), respectively. CONCLUSION: Addition of trastuzumab and pertuzumab to nCRT in patients with HER2-positive EAC is feasible and demonstrates potentially promising activity compared with historical controls. HER2 3+ overexpression and Grb7 positivity are potentially predictive for survival and treatment response, respectively

    Pharmacokinetics and pharmacodynamics of medication in asphyxiated newborns during controlled hypothermia. The PharmaCool multicenter study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the Netherlands, perinatal asphyxia (severe perinatal oxygen shortage) necessitating newborn resuscitation occurs in at least 200 of the 180–185.000 newly born infants per year. International randomized controlled trials have demonstrated an improved neurological outcome with therapeutic hypothermia. During hypothermia neonates receive sedative, analgesic, anti-epileptic and antibiotic drugs. So far little information is available how the pharmacokinetics (PK) and pharmacodynamics (PD) of these drugs are influenced by post resuscitation multi organ failure and the metabolic effects of the cooling treatment itself. As a result, evidence based dosing guidelines are lacking. This multicenter observational cohort study was designed to answer the question how hypothermia influences the distribution, metabolism and elimination of commonly used drugs in neonatal intensive care.</p> <p>Methods/Design</p> <p>Multicenter cohort study. All term neonates treated with hypothermia for Hypoxic Ischemic Encephalopathy (HIE) resulting from perinatal asphyxia in all ten Dutch Neonatal Intensive Care Units (NICUs) will be eligible for this study. During hypothermia and rewarming blood samples will be taken from indwelling catheters to investigate blood concentrations of several antibiotics, analgesics, sedatives and anti-epileptic drugs. For each individual drug the population PK will be characterized using Nonlinear Mixed Effects Modelling (NONMEM). It will be investigated how clearance and volume of distribution are influenced by hypothermia also taking maturation of neonate into account. Similarly, integrated PK-PD models will be developed relating the time course of drug concentration to pharmacodynamic parameters such as successful seizure treatment; pain assessment and infection clearance.</p> <p>Discussion</p> <p>On basis of the derived population PK-PD models dosing guidelines will be developed for the application of drugs during neonatal hypothermia treatment. The results of this study will lead to an evidence based drug treatment of hypothermic neonatal patients. Results will be published in a national web based evidence based paediatric formulary, peer reviewed journals and international paediatric drug references.</p> <p>Trial registration</p> <p>NTR2529.</p

    Short-Term Fasting Alters Pharmacokinetics of Cytochrome P450 Probe Drugs: Does Protein Binding Play a Role?

    No full text
    Short-term fasting differentially alters cytochrome P450 (CYP) mediated drug metabolism. This has been established by using CYP-enzyme selective probe drugs. However, the observed effects of fasting on the pharmacokinetics of these probe drugs may also include the effects of altered plasma protein binding of these drugs. Therefore, we studied the effect of short-term fasting on protein binding of five commonly used probe drugs [caffeine (CYP1A2), metoprolol (CYP2D6), midazolam (CYP3A4), omeprazole (CYP2C19) and S-warfarin (CYP2C9)]. The free and total plasma concentrations of the five probe drugs were analyzed by LC-MS/MS in samples retrieved in a cross-over study in which nine healthy subjects received an intravenous administration of the cocktail after an overnight fast (control) and after 36 h of fasting. Short-term fasting increased plasma free fatty acid concentrations from 0.48 mmol/L (control) to 1.29 mmol/L (36 h fasting) (p = 0.012). Short-term fasting did not alter the free fractions of caffeine, metoprolol and omeprazole compared to the control intervention (p > 0.05). Power to detect a difference for midazolam and S-warfarin was low since the majority of free concentrations were below the limit of quantification. This study demonstrates that short-term fasting does not alter protein binding of the probe drugs caffeine, metoprolol and omeprazol

    Nutritional Status Differentially Alters Cytochrome P450 3A4 (CYP3A4) and Uridine 5′-Diphospho-Glucuronosyltransferase (UGT) Mediated Drug Metabolism: Effect of Short-Term Fasting and High Fat Diet on Midazolam Metabolism

    No full text
    Background and Objectives: Previous studies have shown that nutritional status can alter drug metabolism which may result in treatment failure or untoward side effects. This study assesses the effect of two nutritional conditions, short-term fasting, and a short-term high fat diet (HFD) on cytochrome P450 3A4 (CYP3A4) and uridine 5′-diphospho-glucuronosyltransferase (UGT) mediated drug metabolism by studying the pharmacokinetics of midazolam and its main metabolites. Methods: In a randomized-controlled cross-over trial, nine healthy subjects received a single intravenous administration of 0.015 mg/kg midazolam after: (1) an overnight fast (control); (2) 36 h of fasting; and (3) an overnight fast after 3 days of a HFD consisting of 500 ml of cream supplemented to their regular diet. Pharmacokinetic parameters were analyzed simultaneously using non-linear mixed-effects modeling. Results: Short-term fasting increased CYP3A4-mediated midazolam clearance by 12% (p < 0.01) and decreased UGT-mediated metabolism apparent 1-OH-midazolam clearance by 13% (p < 0.01) by decreasing the ratio of clearance and the fraction metabolite formed (ΔCL1-OH-MDZ/f1-OH-MDZ). Furthermore, short-term fasting decreased apparent clearance of 1-OH-midazolam-O-glucuronide (CL1-OH-MDZ-glucuronide/(f1-OH-MDZ-glucuronide × f1-OH-MDZ)) by 20% (p < 0.01). The HFD did not affect systemic clearance of midazolam or metabolites. Conclusions: Short-term fasting differentially alters midazolam metabolism by increasing CYP3A4-mediated metabolism but by decreasing UGT-mediated metabolism. In contrast, a short-term HFD did not affect systemic clearance of midazolam

    The effects of fasting on drug metabolism

    No full text
    Introduction: There is considerable variability in the rates and extent of drug metabolism between patients due to physiological, genetic, pharmacologic, environmental and nutritional factors such as fasting. This variability in drug metabolism may result in treatment failure or, conversely, in increased side effects or toxicity. Preclinical studies have shown that fasting alters drug metabolism by modulating the activity of drug metabolizing enzymes involved. However, until recently little was known about the effects of fasting on drug metabolism in humans. Areas covered: This review describes the effects of fasting on drug metabolism based on both preclinical studies and studies performed in humans. Expert opinion: A better understanding of the effects of fasting may improve the efficacy and safety of pharmacotherapy for individual patients. Fasting contributes to variability in human drug metabolism by differentially affecting drug metabolizing enzymes. Although the effects of fasting on drug metabolism appear to be small (between 10-20%), fasting may be relevant for drugs with a small therapeutic range and/or in combination with other factors that contribute to variability in drug metabolism such as physiological, genetic or pharmacological factors. Therefore, additional research on this topic is warranted

    Effect of Short-Term Fasting on Systemic Cytochrome P450-Mediated Drug Metabolism in Healthy Subjects: A Randomized, Controlled, Crossover Study Using a Cocktail Approach

    No full text
    Short-term fasting can alter drug exposure but it is unknown whether this is an effect of altered oral bioavailability and/or systemic clearance. Therefore, the aim of our study was to assess the effect of short-term fasting on oral bioavailability and systemic clearance of different drugs. In a randomized, controlled, crossover trial, 12 healthy subjects received a single administration of a cytochrome P450 (CYP) probe cocktail, consisting of caffeine (CYP1A2), metoprolol (CYP2D6), midazolam (CYP3A4), omeprazole (CYP2C19) and warfarin (CYP2C9), on four occasions: an oral (1) and intravenous (2) administration after an overnight fast (control) and an oral (3) and intravenous (4) administration after 36 h of fasting. Pharmacokinetic parameters of the probe drugs were analyzed using the nonlinear mixed-effects modeling software NONMEM. Short-term fasting increased systemic caffeine clearance by 17% (p = 0.04) and metoprolol clearance by 13% (p <0.01), whereas S-warfarin clearance decreased by 19% (p <0.01). Fasting did not affect bioavailability. The study demonstrates that short-term fasting alters CYP-mediated drug metabolism in a non-uniform pattern without affecting oral bioavailabilit

    Short-Term High-Fat Diet Alters Acetaminophen Metabolism in Healthy Individuals

    No full text
    BACKGROUND: Acetaminophen is metabolized through a nontoxic sulfation and glucuronidation pathway and toxic oxidation pathway (via CYP2E1 and CYP1A2). A short-term high-fat diet induces alterations in the steatotic liver and may alter hepatic drug enzyme activity. In the case of acetaminophen, these alterations may result in an increased risk of hepatotoxicity. Therefore, this study was conducted to assess the effect of a 3-day hypercaloric high-fat diet on the plasma levels of acetaminophen metabolites. METHODS: Nine healthy subjects participated in this randomized, crossover intervention study. The subjects consumed a regular diet or a regular diet supplemented with 500 mL of cream (1700 kcal) for 3 days and then fasted overnight. After ingesting 1000-mg acetaminophen, the plasma concentration of acetaminophen (APAP) and its metabolites [acetaminophen glucuronide, acetaminophen sulfate, 3-cysteinyl-acetaminophen, and 3-(N-acetyl-L-cystein-S-yl)-acetaminophen, and 3-methoxy-acetaminophen] were measured. RESULTS: The 3-day high-fat diet increased the extrapolated area under the concentration-time curve from 0 to infinity (area under the curve 0-inf ) of APAP-Cys by approximately 20% ( P = 0.02) and that from 0 to 8 hours (area under the curve 0-8 ) of APAP-Cys-NAC by approximately 39% ( P = 0.01). The 3-day high-fat diet did not alter the pharmacokinetic parameters of the parent compound acetaminophen and other metabolites. CONCLUSIONS: A short-term, hypercaloric, high-fat diet increases the plasma levels of the APAP metabolites formed by the oxidation pathway, which may increase the risk of hepatotoxicity
    corecore