27 research outputs found

    The Formation of N- and O-Heterocycles from the Irradiation of Benzene and Naphthalene in H2O/NH3- Containing Ices

    Get PDF
    Aromatic hydrocarbons are an important class of molecules for both astrochemistry and astrobiology (Fig. 1). Within this class of molecules, polycyclic aromatic hydrocarbons (PAHs) are known to be ubiquitous in many astrophysical environments, and are likely present in interstellar clouds and protostellar disks. In dense clouds, PAHs are expected to condense onto grains as part of mixed molecular ice mantles dominated by small molecules like H2O,CH3OH, NH3, CO, and CO2. These ices are exposed to ionizing radiation in the form of cosmic rays and ambient high-energy X-ray and UV photons

    The Formation of N- and O-Heterocycles from the Irradiation of Benzene and Naphthalene in H2O- and NH3-Containing Ices

    Get PDF
    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in many astrophysical environments, and are likely present in interstellar clouds and protostellar disks [1]. In dense molecular clouds,PAHs and other gas-phase species are expected tocondense onto grains to form mixed molecular ice mantles dominated by small molecules like H2O, CH3OH, NH3, CO, and CO2 [2]. These icy mantleslikely undergo energetic processing from ionizing radiation in the form of cosmic rays and high-energy photons

    Nucleobases and other Prebiotic Species from the Ultraviolet Irradiation of Pyrimidine in Astrophysical Ices

    Get PDF
    Nucleobases are N-heterocycles that are the informational subunits of DNA and RNA, and are divided into two families: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites and their extraterrestrial origin confirmed by isotope measurement. Although no Nheterocycles have ever been observed in the ISM, the positions of the 6.2-m interstellar emission features suggest a population of such molecules is likely to be present. In this work we study the formation of pyrimidine-based molecules, including nucleobases, as well as other species of prebiotic interest, from the ultraviolet (UV) irradiation of pyrimidine in combinations of H2O, NH3, CH3OH, and CH4 ices at low temperature, in order to simulate the astrophysical conditions under which prebiotic species may be formed in the interstellar medium and icy bodies of the Solar System. Experimental: Gas mixtures are prepared in a glass mixing line (background pressure approx. 10(exp -6)-10(exp -5) mbar). Relative proportions between mixture components are determined by their partial pressures. Gas mixtures are then deposited on an aluminum foil attached to a cold finger (15-20 K) and simultaneously irradiated with an H2 lamp emitting UV photons (Lyman and a continuum at approx.160 nm). After irradiation samples are warmed to room temperature, at which time the remaining residues are recovered to be analyzed with liquid and gas chromatographies. Results: These experiments showed that the UV irradiation of pyrimidine mixed in these ices at low temperature leads to the formation of several photoproducts derived from pyrimidine, including the nucleobases uracil and cytosine, as well as their precursors 4(3H)-pyrimidone and 4-aminopyrimidine (Fig. 1). Theoretical quantum calculations on the formation of 4(3H)-pyrimidone and uracil from the irradiation of pyrimidine in pure H2O ices are in agreement with their experimental formation pathways. In those residues, other species of prebiotic interest such as urea and the amino acids glycine and alanine could also be identified. However, no pyrimidine derivatives containing CH3 groups, including the third nucleobase thymine, could be identified, suggesting that the addition of methyl groups to pyrimidine is not an efficient process

    The Photochemistry of Pyrimidine in Pure H2O Ice Subjected to Different Radiation Environments and the Formation of Uracil

    Get PDF
    Nucleobases are N-heterocycles which are the informational subunits of DNA and RNA. They include pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in several meteorites, although no Nheterocycles have been observed in space to data. Laboratory experiments showed that the ultraviolet (UV) irradiation of pyrimidine in pure H2O ice at low temperature (<=20 K) leads to the formation of pyrimidine derivatives including the nucleobase uracil and its precursor 4(3H)-pyrimidone. These results were confirmed by quantum chemical calculations. When pyrimidine is mixed with combinations of H2O, NH3, CH3OH, and CH4 ices under similar conditions, uracil and cytosine are formed. In the present work we study the formation of 4(3H)-pyrimidone and uracil from the irradiation of pyrimidine in H2O ice with high-energy UV photons (Lyman , He I, and He II lines) provided by a synchrotron source. The photo-destruction of pyrimidine in these H2O ices as well as the formation yields for 4(3H)-pyrimidone and uracil are compared with our previous results in order to study the photo-stability of pyrimidine and the production efficiency of uracil as a function of the photon energy

    Atomic-Level Characterization of the Activation Mechanism of SERCA by Calcium

    Get PDF
    We have performed molecular dynamics (MD) simulations to elucidate, in atomic detail, the mechanism by which the sarcoplasmic reticulum Ca2+-ATPase (SERCA) is activated by Ca2+. Crystal structures suggest that activation of SERCA occurs when the cytoplasmic head-piece, in an open (E1) conformation stabilized by Ca2+, undergoes a large-scale open-to-closed (E1 to E2) transition that is induced by ATP binding. However, spectroscopic measurements in solution suggest that these structural states (E1 and E2) are not tightly coupled to biochemical states (defined by bound ligands); the closed E2 state predominates even in the absence of ATP, in both the presence and absence of Ca2+. How is this loose coupling consistent with the high efficiency of energy transduction in the Ca2+-ATPase? To provide insight into this question, we performed long (500 ns) all-atom MD simulations starting from the open crystal structure, including a lipid bilayer and water. In both the presence and absence of Ca2+, we observed a large-scale open-to-closed conformational transition within 400 ns, supporting the weak coupling between structural and biochemical states. However, upon closer inspection, it is clear that Ca2+ is necessary and sufficient for SERCA to reach the precise geometrical arrangement necessary for activation of ATP hydrolysis. Contrary to suggestions from crystal structures, but in agreement with solution spectroscopy, the presence of ATP is not required for this activating transition. Principal component analysis showed that Ca2+ reshapes the free energy landscape of SERCA to create a path between the open conformation and the activated closed conformation. Thus the malleability of the free energy landscape is essential for SERCA efficiency, ensuring that ATP hydrolysis is tightly coupled to Ca2+ transport. These results demonstrate the importance of real-time dynamics in the formation of catalytically competent conformations of SERCA, with broad implications for understanding enzymatic catalysis in atomic detail

    Internet of Things for Sustainable Community Development: Introduction and Overview

    Get PDF
    The two-third of the city-dwelling world population by 2050 poses numerous global challenges in the infrastructure and natural resource management domains (e.g., water and food scarcity, increasing global temperatures, and energy issues). The IoT with integrated sensing and communication capabilities has the strong potential for the robust, sustainable, and informed resource management in the urban and rural communities. In this chapter, the vital concepts of sustainable community development are discussed. The IoT and sustainability interactions are explained with emphasis on Sustainable Development Goals (SDGs) and communication technologies. Moreover, IoT opportunities and challenges are discussed in the context of sustainable community development

    Production and Potential Detection of Functionalized Hexamethylene-Tetramine Compounds in Space

    No full text
    Laboratory studies have shown that exposure of mixed ices of astrophysical interest to ionizing radiation such as ultraviolet (UV) photons or energetic particles (electrons, protons) leads to the production of large numbers of new, more complex compounds. A significant portion of these new species appear to belong to a family of molecules that consist of hexamethylenetetramine (HMT; C6N4H12) and HMT to which different chemical side groups have been substituted for a peripheral H atom. This work presents the identification of HMT-methanol (HMT-CH2OH), one of these HMT variants, in organic residues produced from the UV irradiation of astrophysically relevant ice mixtures at < 20 K. We also present the infrared (IR) spectra of HMT, HMTCH2OH, and a number of other HMT variants computed using density functional theory (DFT) computations. These spectra can be compared with each other and show similarities that can be used to search for this family of compounds in space

    Hierarchical organization of eglin c native state dynamics is shaped by competing direct and water-mediated interactions

    Get PDF
    The native state dynamics of the small globular serine protease inhibitor eglin c has been studied in a long 336 ns computer simulation in explicit solvent. We have elucidated the energy landscape explored during the course of the simulation by using Principal Component Analysis. We observe several basins in the energy landscape in which the system lingers for extended periods. Through an iterative process we have generated a tree-like hierarchy of states describing the observed dynamics. We observe a range of divergent contact types including salt bridges, hydrogen bonds, hydrophilic interactions, and hydrophobic interactions, pointing to the frustration between competing interactions. Additionally, we find evidence of competing water-mediated interactions. Divergence in water-mediated interactions may be found to supplement existing direct contacts, but they are also found to be independent of such changes. Water-mediated contacts facilitate interactions between residues of like charge as observed in the simulation. Our results provide insight into the complexity of the dynamic native state of a globular protein and directly probe the residual frustration in the native state
    corecore