5 research outputs found

    The Role of Extracellular Vesicles as Modulators of the Tumor Microenvironment, Metastasis and Drug Resistance in Colorectal Cancer.

    Get PDF
    Colorectal cancer (CRC) is one of the most common cancers worldwide, with high morbidity and mortality rates. A number of factors including modulation of the tumor microenvironment, high metastatic capability, and resistance to treatment have been associated with CRC disease progression. Recent studies have documented that tumor-derived extracellular vesicles (EVs) play a significant role in intercellular communication in CRC via transfer of cargo lipids, proteins, DNA and RNAs to the recipient tumor cells. This transfer influences a number of immune-related pathways leading to activation/differentiation/expression of immune cells and modulation of the tumor microenvironment that plays a significant role in CRC progression, metastasis, and drug resistance. Furthermore, tumor-derived EVs are secreted in large amounts in biological fluids of CRC patients and as such the expression analysis of EV cargoes have been associated with prognosis or response to therapy and may be a source of therapeutic targets. This review aims to provide a comprehensive insight into the role of EVs in the modulation of the tumor microenvironment and its effects on CRC progression, metastasis, and drug resistance. On the other hand, the potential role of CRC derived EVs as a source of biomarkers of response and therapeutic targets will be discussed in detail to understand the dynamic role of EVs in CRC diagnosis, treatment, and management

    Anticancer activity of Neosetophomone B by targeting AKT/SKP2/MTH1 axis in leukemic cells

    Get PDF
    Neosetophomone B (NSP–B), a meroterpenoid fungal secondary metabolite, was investigated for its anticancer potential in leukemic cell lines (K562 and U937). NSP-B treatment of leukemic cells suppressed cell viability by triggering apoptotic cell death. Apoptosis induced by NSP-B is triggered by mitochondrial signaling and caspase activation. Additionally, NSP-B treatment of leukemic cells causes AKT's inactivation accompanied by downregulation of SKP2 oncogene and MTH1 with a concomitant increase of p21Cip1and p27Kip1. Furthermore, NSP-B causes suppression of antiapoptotic proteins, including cIAP1, cIAP2, XIAP, survivin and BCl-XL. Overall, NSP-B reduces cell viability by mitochondrial and caspase-dependent apoptosis. The inhibition of AKT and SKP2 axis could be a promising therapeutic target for leukemia treatment.This work was supported by grant funded by the Medical Research Center (MRC), Hamad Medical Corporation, Doha, Qatar (MRC-01-21-301). The authors thank Qatar National Library for open access support of this article

    Aryl Hydrocarbon Receptor Promotes Cell Growth, Stemness Like Characteristics, and Metastasis in Human Ovarian Cancer via Activation of PI3K/Akt, β-Catenin, and Epithelial to Mesenchymal Transition Pathways

    Get PDF
    Ovarian cancer (OC) ranks first in cancer-related deaths out of all female reproductive malignancies with high-pitched tumor relapse and chemoresistance. Several reports correlate cancer occurrences with exposure to xenobiotics via induction of a protein receptor named aryl hydrocarbon receptor (AhR). However, the effect of AhR on OC proliferation, expansion, and chemoresistance remains unrevealed. For this purpose, OC cells A2780 and A2780cis cells were treated with AhR activator, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and the effects were determined by Real-Time Cell Analyzer, clonogenic assay, flow cytometry, immunoblotting and wound healing assay. Our results showed that activation of AhR by TCDD in A2780 cells induced the PI3K/AKT pathway followed by induction of anti-apoptotic proteins BCL-2, BCL-xl, and MCL-1. In addition, a significant increase in stemness marker aldehyde dehydrogenase (ALDH1) was observed. This effect was also associated with an accumulation of β-catenin, a Wnt transcription factor. Moreover, we observed induction of epithelial to mesenchymal transition (EMT) upon AhR activation. In conclusion, the results from the current study confirm that AhR mediates OC progression, stemness characteristics, and metastatic potential via activation of PI3K/Akt, Wnt/β-catenin, and EMT. This study provides a better insight into the modulatory role of AhR that might help in developing novel therapeutic strategies for OC treatment

    Neosetophomone B induces apoptosis in multiple myeloma cells via targeting of AKT/SKP2 signaling pathway

    Get PDF
    Multiple myeloma (MM) is a hematologic malignancy associated with malignant plasma cell proliferation in the bone marrow. Despite the available treatments, drug resistance and adverse side effects pose significant challenges, underscoring the need for alternative therapeutic strategies. Natural products, like the fungal metabolite neosetophomone B (NSP-B), have emerged as potential therapeutic agents due to their bioactive properties. Our study investigated NSP-B's antitumor effects on MM cell lines (U266 and RPMI8226) and the involved molecular mechanisms. NSP-B demonstrated significant growth inhibition and apoptotic induction, triggered by reduced AKT activation and downregulation of the inhibitors of apoptotic proteins and S-phase kinase protein. This was accompanied by an upregulation of p21Kip1 and p27Cip1 and an elevated Bax/BCL2 ratio, culminating in caspase-dependent apoptosis. Interestingly, NSP-B also enhanced the cytotoxicity of bortezomib (BTZ), an existing MM treatment. Overall, our findings demonstrated that NSP-B induces caspase-dependent apoptosis, increases cell damage, and suppresses MM cell proliferation while improving the cytotoxic impact of BTZ. These findings suggest that NSP-B can be used alone or in combination with other medicines to treat MM, highlighting its importance as a promising phytoconstituent in cancer therapy.Qatar National Library provided open access of this article. This work was supported by grants funded by the Medical Research Center (MRC), Hamad Medical Corporation, Doha, Qatar (MRC‐01‐21‐301)
    corecore