375 research outputs found

    Elastic alpha-scattering of 112Sn and 124Sn at astrophysically relevant energies

    Get PDF
    The cross sections for the elastic scattering reactions {112,124}Sn(a,a){112,124}Sn at energies above and below the Coulomb barrier are presented and compared to predictions for global alpha-nucleus potentials. The high precision of the new data allows a study of the global alpha-nucleus potentials at both the proton and neutron-rich sides of an isotopic chain. In addition, local alpha-nucleus potentials have been extracted for both nuclei, and used to reproduce elastic scattering data at higher energies. Predictions from the capture cross section of the reaction 112Sn(a,g)116Te at astrophysically relevant energies are presented and compared to experimental data.Comment: 20 pages, 10 figures, accepted for publication in Phys. Rev.

    Refined heart failure detection algorithm for improved clinical reliability of OptiVol alerts in CRT-D recipients

    Get PDF
       Background: The reliability of intrathoracic impedance monitoring for prediction of heart failure (HF) by implantable cardiac devices is controversial. Despite using additional device-based parameters described in the PARTNERS HF study, such as new onset of arrhythmias, abnormal autonomics, low biventricular pacing rate or patient activity level, the predictive power of device diagnostic algorithm is still in doubt. The objective of this study was to compare the device diagnostic algorithm described in the PARTNERS HF study to a newly developed algorithm applying refined diagnostic criteria. Methods: Fourty two patients were prospectively enrolled who had been implanted with an intrathoracic impedance and remote monitoring capable implantable cardiac defibrillator with a cardiac resychroniza­tion therapy (CRT-D) device in this observational study. If a remote OptiVolTM alert occurred, patients were checked for presence of HF symptoms. A new algorithm was derived from the original PARTNERS HF criteria, considering more sensitive cut-offs and changes of patterns of the device-based parameters. Results: During an average follow-up of 38 months, 722 remote transmissions were received. From the total of 128 transmissions with OptiVol alerts, 32 (25%) corresponded to true HF events. Upon multivariate discriminant analysis, low patient activity, high nocturnal heart rate, and low CRT pacing (< 90%) proved to be independent predictors of true HF events (all p < 0.01). Incorporating these three refined criteria in a new algorithm, the diagnostic yield of OptiVol was improved by increasing specific­ity from 37.5% to 86.5%, positive predictive value from 34.1% to 69.8% and area under the curve from 0.787 to 0.922 (p < 0.01), without a relevant loss in sensitivity (96.9% vs. 93.8%). Conclusions: A refined device diagnostic algorithm based on the parameters of low activity level, high nocturnal heart rate, and suboptimal biventricular pacing might improve the clinical reliability of OptiVol alerts.  

    Superdeformed rotational bands in Pu-240

    Get PDF
    The intermediate structure of the fission resonances has been observed in Pu-240. A resonance structure found around the excitation energy of 4.5 MeV was interpreted as a group of K-pi = 0(+) superdeformed rotational bands. The moments of inertia and level density distributions were also deduced for the individually observed band-heads

    Velocity tuning of friction with two trapped atoms

    Get PDF
    Our ability to control friction remains modest, as our understanding of the underlying microscopic processes is incomplete. Atomic force experiments have provided a wealth of results on the dependence of nanofriction on structure velocity and temperature but limitations in the dynamic range, time resolution, and control at the single-atom level have hampered a description from first principles. Here, using an ion-crystal system with single-atom, single-substrate-site spatial and single-slip temporal resolution we measure the friction force over nearly five orders of magnitude in velocity, and contiguously observe four distinct regimes, while controlling temperature and dissipation. We elucidate the interplay between thermal and structural lubricity for two coupled atoms, and provide a simple explanation in terms of the Peierls–Nabarro potential. This extensive control at the atomic scale enables fundamental studies of the interaction of many-atom surfaces, possibly into the quantum regime

    Resonant tunneling through the triple-humped fission barrier of U-236

    Get PDF
    The fission probability of U-236 as a function of the excitation energy has been measured with high energy resolution using the U-235(d, pf) reaction in order to study hyperdeformed (HD) rotational bands. Rotational band structures with a moment of inertia of theta = 217 +/- 38 h(2)/MeV have been observed, corresponding to hyperdeformed configurations. From the level density of the rotational bands the excitation energy of the ground state in the third minimum was determined to be 2.7 +/- 0.4 MeV. The excitation energy of the lowest hyperdeformed transmission resonance and the energy dependence of the fission isomer population probability enabled the determination of the height of the inner fission barrier E-A = 5.05 +/- 0.20 MeV and its curvature parameter h omega(A) = 1.2 MeV. Using this new method the long-standing uncertainties in determining the height of the inner potential barrier in uranium isotopes could be resolved. (c) 2005 Elsevier B.V. All rights reserved
    • …
    corecore