584 research outputs found

    Anisotropic spin fluctuations and multiple superconducting gaps in hole-doped Ba_0.7K_0.3Fe_2As_2: NMR in a single crystal

    Full text link
    We report the first ^{75}As-NMR study on a single crystal of the hole-doped iron-pnictide superconductor Ba_{0.7}K_{0.3}Fe_2As_{2} (T_c = 31.5 K). We find that the Fe antiferromagnetic spin fluctuations are anisotropic and are weaker compared to underdoped copper-oxides or cobalt-oxide superconductors. The spin lattice relaxation rate 1/T_1 decreases below T_c with no coherence peak and shows a step-wise variation at low temperatures, which is indicative of multiple superconducting gaps, as in the electron-doped Pr(La)FeAsO1−x_{1-x}Fx_{x}. Furthermore, no evidence was obtained for a microscopic coexistence of a long-range magnetic and superconductivity

    Pressure-induced unconventional superconductivity near a quantum critical point in CaFe2As2

    Full text link
    75As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements are performed on CaFe2As2 under pressure. At P = 4.7 and 10.8 kbar, the temperature dependences of nuclear-spin-lattice relaxation rate (1/T1) measured in the tetragonal phase show no coherence peak just below Tc(P) and decrease with decreasing temperature. The superconductivity is gapless at P = 4.7 kbar but evolves to that with multiple gaps at P = 10.8 kbar. We find that the superconductivity appears near a quantum critical point under pressures in the range 4.7 kbar < P < 10.8 kbar. Both electron correlation and superconductivity disappear in the collapsed tetragonal phase. A systematic study under pressure indicates that electron correlations play a vital role in forming Cooper pairs in this compound.Comment: 5pages, 5figure

    Na content dependence of superconductivity and the spin correlations in Na_{x}CoO_{2}\cdot 1.3H_{2}O

    Full text link
    We report systematic measurements using the ^{59}Co nuclear quadrupole resonance(NQR) technique on the cobalt oxide superconductors Na_{x}CoO_{2}\cdot 1.3H_{2}O over a wide Na content range x=0.25\sim 0.34. We find that T_c increases with decreasing x but reaches to a plateau for x \leq0.28. In the sample with x \sim 0.26, the spin-lattice relaxation rate 1/T_1 shows a T^3 variation below T_c and down to T\sim T_c/6, which unambiguously indicates the presence of line nodes in the superconducting (SC) gap function. However, for larger or smaller x, 1/T_1 deviates from the T^3 variation below T\sim 2 K even though the T_c (\sim 4.7 K) is similar, which suggests an unusual evolution of the SC state. In the normal state, the spin correlations at a finite wave vector become stronger upon decreasing x, and the density of states at the Fermi level increases with decreasing x, which can be understood in terms of a single-orbital picture suggested on the basis of LDA calculation.Comment: version published in J. Phys. Condens. Matter (references updated and more added

    Pressure dependence of the superconducting transition and electron correlations in Na_xCoO_2 \cdot 1.3H_2O

    Full text link
    We report T_c and ^{59}Co nuclear quadrupole resonance (NQR) measurements on the cobalt oxide superconductor Na_{x}CoO_{2}\cdot 1.3H_{2}O (T_c=4.8 K) under hydrostatic pressure (P) up to 2.36 GPa. T_c decreases with increasing pressure at an average rate of -0.49\pm0.09 K/GPa. At low pressures P\leq0.49 GPa, the decrease of T_c is accompanied by a weakening of the spin correlations at a finite wave vector and a reduction of the density of states (DOS) at the Fermi level. At high pressures above 1.93 GPa, however, the decrease of T_c is mainly due to a reduction of the DOS. These results indicate that the electronic/magnetic state of Co is primarily responsible for the superconductivity. The spin-lattice relaxation rate 1/T_1 at P=0.49 GPa shows a T^3 variation below T_c down to T\sim 0.12T_c, which provides compelling evidence for the presence of line nodes in the superconducting gap function.Comment: published on 19, Sept. 2007 on Phys. Rev.

    Hydration-induced anisotropic spin fluctuations in Na_{x}CoO_{2}\cdot1.3H_{2}O superconductor

    Full text link
    We report ^{59}Co NMR studies in single crystals of cobalt oxide superconductor Na_{0.42}CoO_{2}\cdot1.3H_{2}O (T_c=4.25K) and its parent compound Na_{0.42}CoO_{2}. We find that both the magnitude and the temperature (T) dependence of the Knight shifts are identical in the two compounds above T_c. The spin-lattice relaxation rate (1/T_1) is also identical above T_0 \sim60 K for both compounds. Below T_0, the unhydrated sample is found to be a non-correlated metal that well conforms to Fermi liquid theory, while spin fluctuations develop in the superconductor. These results indicate that water intercalation does not change the density of states but its primary role is to bring about spin fluctuations. Our result shows that, in the hydrated superconducting compound, the in-plane spin fluctuation around finite wave vector is much stronger than that along the c-axis, which indicates that the spin correlation is quasi-two-dimensional.Comment: 4 pages, 5 figure

    Strong-coupling Spin-singlet Superconductivity with Multiple Full Gaps in Hole-doped Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2 Probed by Fe-NMR

    Full text link
    We present 57^{57}Fe-NMR measurements of the novel normal and superconducting-state characteristics of the iron-arsenide superconductor Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2 (TcT_c = 38 K). In the normal state, the measured Knight shift and nuclear spin-lattice relaxation rate (1/T1)(1/T_1) demonstrate the development of wave-number (qq)-dependent spin fluctuations, except at qq = 0, which may originate from the nesting across the disconnected Fermi surfaces. In the superconducting state, the spin component in the 57^{57}Fe-Knight shift decreases to almost zero at low temperatures, evidencing a spin-singlet superconducting state. The 57^{57}Fe-1/T11/T_1 results are totally consistent with a s±s^\pm-wave model with multiple full gaps, regardless of doping with either electrons or holes.Comment: 4 pages, 4 figures, 1 tabl

    Lateral distribution of high energy hadrons and gamma ray in air shower cores observed with emulsion chambers

    Get PDF
    A high energy event of a bundle of electrons, gamma rays and hadronic gamma rays in an air shower core were observed. The bundles were detected with an emulsion chamber with thickness of 15 cm lead. This air shower is estimated to be initiated with a proton with energy around 10 to the 17th power to 10 to the 18th power eV at an altitude of around 100 gmc/2. Lateral distributions of the electromagnetic component with energy above 2 TeV and also the hadronic component of energy above 6 TeV of this air shower core were determined. Particles in the bundle are produced with process of the development of the nuclear cascade, the primary energy of each interaction in the cascade which produces these particles is unknown. To know the primary energy dependence of transverse momentum, the average products of energy and distance for various average energies of secondary particles are studied
    • …
    corecore