159 research outputs found

    Polarization entangled state measurement on a chip

    Full text link
    The emerging strategy to overcome the limitations of bulk quantum optics consists of taking advantage of the robustness and compactness achievable by the integrated waveguide technology. Here we report the realization of a directional coupler, fabricated by femtosecond laser waveguide writing, acting as an integrated beam splitter able to support polarization encoded qubits. This maskless and single step technique allows to realize circular transverse waveguide profiles able to support the propagation of Gaussian modes with any polarization state. Using this device, we demonstrate the quantum interference with polarization entangled states and singlet state projection.Comment: Revtex, 5+2 pages (with supplementary information), 4+1 figure

    Multi-path entanglement of two photons

    Full text link
    We present a novel optical device based on an integrated system of micro-lenses and single mode optical fibers. It allows to collect and direct into many modes two photons generated by spontaneous parametric down conversion. By this device multiqubit entangled states and/or multilevel qu-ddit states of two photons, encoded in the longitudinal momentum degree of freedom, are created. The multi-path photon entanglement realized by this device is expected to find important applications in modern quantum information technology.Comment: 4 pages, 3 figures, revtex, revised versio

    Generating qudits with d=3,4 encoded on two-photon states

    Full text link
    We present an experimental method to engineer arbitrary pure states of qudits with d=3,4 using linear optics and a single nonlinear crystal.Comment: 4 pages, 1 eps figure. Minor changes. The title has been changed for publication on Physical Review

    General rules for bosonic bunching in multimode interferometers

    Full text link
    We perform a comprehensive set of experiments that characterize bosonic bunching of up to 3 photons in interferometers of up to 16 modes. Our experiments verify two rules that govern bosonic bunching. The first rule, obtained recently in [1,2], predicts the average behavior of the bunching probability and is known as the bosonic birthday paradox. The second rule is new, and establishes a n!-factor quantum enhancement for the probability that all n bosons bunch in a single output mode, with respect to the case of distinguishable bosons. Besides its fundamental importance in phenomena such as Bose-Einstein condensation, bosonic bunching can be exploited in applications such as linear optical quantum computing and quantum-enhanced metrology.Comment: 6 pages, 4 figures, and supplementary material (4 pages, 1 figure

    "All-versus-nothing" nonlocality test of quantum mechanics by two-photon hyperentanglement

    Full text link
    We report the experimental realization and the characterization of polarization and momentum hyperentangled two photon states, generated by a new parametric source of correlated photon pairs. By adoption of these states an "all versus nothing" test of quantum mechanics was performed. The two photon hyperentangled states are expected to find at an increasing rate a widespread application in state engineering and quantum information. PACS: 03.65.Ud, 03.67.Mn, 42.65. LmComment: Replaced with published versio

    Suppression law of quantum states in a 3D photonic fast Fourier transform chip

    Get PDF
    The identification of phenomena able to pinpoint quantum interference is attracting large interest. Indeed, a generalization of the Hong-Ou-Mandel effect valid for any number of photons and optical modes would represent an important leap ahead both from a fundamental perspective and for practical applications, such as certification of photonic quantum devices, whose computational speedup is expected to depend critically on multi-particle interference. Quantum distinctive features have been predicted for many particles injected into multimode interferometers implementing the Fourier transform over the optical modes. Here we develop a scalable approach for the implementation of the fast Fourier transform algorithm using three-dimensional photonic integrated interferometers, fabricated via femtosecond laser writing technique. We observe the suppression law for a large number of output states with four- and eight-mode optical circuits: the experimental results demonstrate genuine quantum interference between the injected photons, thus offering a powerful tool for diagnostic of photonic platforms

    Enhancing nonclassical bosonic correlations in a quantum walk network through experimental control of disorder

    Get PDF
    The presence of disorder and inhomogeneities in quantum networks has often been unexpectedly beneficial for both quantum and classical resources. Here we experimentally realize a controllable inhomogenous quantum walk (QW) dynamics, which can be exploited to investigate the effect of coherent disorder on the quantum correlations between two indistinguishable photons. Through the imposition of suitable disorder configurations, we observe two-photon states that exhibit an enhancement in the quantum correlations between two selected modes of the network, compared to the case of an ordered QW. Different configurations of disorder can steer the system toward different realizations of such an enhancement, thus allowing spatial and temporal manipulation of quantum correlations between remote modes of QW networks
    • …
    corecore