
ARTICLE

Received 27 Jul 2015 | Accepted 14 Dec 2015 | Published 4 Feb 2016

Suppression law of quantum states
in a 3D photonic fast Fourier transform chip
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The identification of phenomena able to pinpoint quantum interference is attracting large

interest. Indeed, a generalization of the Hong–Ou–Mandel effect valid for any number

of photons and optical modes would represent an important leap ahead both from a

fundamental perspective and for practical applications, such as certification of photonic

quantum devices, whose computational speedup is expected to depend critically on

multi-particle interference. Quantum distinctive features have been predicted for many

particles injected into multimode interferometers implementing the Fourier transform over

the optical modes. Here we develop a scalable approach for the implementation of the fast

Fourier transform algorithm using three-dimensional photonic integrated interferometers,

fabricated via femtosecond laser writing technique. We observe the suppression law for a

large number of output states with four- and eight-mode optical circuits: the experimental

results demonstrate genuine quantum interference between the injected photons, thus

offering a powerful tool for diagnostic of photonic platforms.
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T
he amplitude interference between wavefunctions
corresponding to indistinguishable particles lies at the
very heart of quantum mechanics. Right after the

introduction of laser amplification, the availability of strong
coherent pulses allowed to test interference between different
light pulses1,2, while generation of pairs of identical photons
through parametric fluorescence3 led subsequently to the
milestone experiment of Hong et al.4–8. Later on, photonic
platforms have been demonstrated to be in principle capable to
perform universal quantum computing9.

Recently, multi-particle interference effects of many photons in
large interferometers are attracting a strong interest, as they should
be able to show unprecedented evidences of the superior quantum
computational power compared with that of classical devices10–12.
The main example is given by the boson sampling13 computational
problem, which consists in sampling from the probability
distribution given by the permanents of the n� n submatrices of
a given Haar random unitary. The problem is computationally
hard (in n) for a classical computer, since calculating the
permanent of a complex-valued matrix is a #P-hard problem.
However, sampling from the output distribution can be efficiently
achieved by letting n indistinguishable photons evolve through an
optical interferometer implementing the unitary transformation
in the Fock space, and by detecting output states with an array
of single-photon detectors. The chance to provide evidences
of a post-classical computation with this relatively simple
set-up has triggered a large experimental effort, leading to
small-scale implementations14–20, as well as theoretical
analyses on the effects of experimental imperfections21,22

and on possible implementations including alternative
schemes23,24.

In the context of searching for experimental evidences
against the extended Church–Turing thesis, a boson sampling
experiment poses a problem of certification of the result’s
correctness in the computationally hard regime25. The very
complexity of the boson-sampling computational problem
precludes the use of a brute-force approach, that is, calculating
the expected probability distribution at the output and comparing
it with the collected data. Efficient statistical techniques able to
rule out trivial alternative distributions have been proposed26 and
tested18,19, but the need for more stringent tests able to rule out
less trivial distributions has led, and continues to encourage,
additional research efforts in this direction.

In particular, an efficient test able to confirm true n-photon
interference in a multimode device has been recently proposed27.
The protocol is based on the use of an interferometer
implementing the transformation described by the np-dimen-
sional Fourier matrix, with p being any integer. When feeding this
device with multi-photon states of a specific symmetry,
suppression of many output configurations is observed28, due
to granular27 many-particle interference. This effect is able to rule
out alternative models requiring only coarse-grained features like
the ones present in Bose–Einstein condensates29–31. Indeed, the
implications of this effect go well beyond the certification of
boson sampling devices. As a generalization of the two-photon/
two-modes Hong–Ou–Mandel (HOM) effect, the suppression
law, also named Zero-Transmission law28, is important at a
fundamental level, while at the practical level it could be used as a
diagnostic tool for a wide range of photonic platforms27,32,33.
During the review process of this work, the implementation of a
discrete Fourier transform circuit in a fully reconfigurable chip
has been reported34. The Zero-Transmission law for three-
photon no-bunching events has been demonstrated in this planar
six-mode interferometer.

In this article, we report the experimental observation of the
recent theoretically proposed27 suppression law for Fourier

matrices, and its use to validate quantum many-body interference
against alternative non-trivial hypotheses resulting in similar output
probability distributions. The Fourier matrices have been
implemented with an efficient and reliable approach by exploiting
the quantum version of the fast Fourier transform (qFFT), an
algorithm developed by Barak and Ben-Aryeh35 to optimize the
number of optical elements required to build the Fourier transform
over the optical modes. Here we implement the qFFT on photonic
integrated interferometers by exploiting the three-dimensional (3D)
capabilities of femtosecond laser writing36,37, which makes it
possible to fabricate waveguides arranged in 3D structures with
arbitrary layouts38–40, by adopting an architecture scalable to a
larger number of modes. The observations have been carried out
with two-photon Fock states injected into four-mode and
eight-mode qFFT interferometers. The peculiar behaviour of Fock
states compared with other kinds of states is investigated, showing
in principle the validity of the certification protocol for the
identification of true granular n-particle interference, which is
the source of a rich landscape of quantum effects such as the
computational complexity of boson sampling.

Results
Suppression law in Fourier transform matrices. As a general-
ization of the HOM effect, it has been pointed out that quantum
interference effects in multimode interferometers may determine
suppression of a large fraction of the output configurations28,31,41,
depending on the specific unitary transformation being
implemented and on the symmetry of the input state. In
particular28,31, let us consider a cyclic input, that is, an n-photon
Fock state over m¼ np modes (for some integer p) where the
occupied modes j sr are determined by the rule j sr ¼ sþðr� 1Þnp� 1,
with r¼ 1, y, n and s¼ 1, y, np� 1. The index s takes into
account the fact that there are np� 1 possible n-photon
arrangements with periodicity np� 1, which simply differ by a
translation of the occupational mode labels. For example, for n¼ 2
and m¼ 4 there are 21¼ 2 possible cyclic states, (1,0,1,0) and
(0,1,0,1), while for n¼ 2 and m¼ 8 there are 22¼ 4 possible
(collision-free) cyclic inputs, that is, the states (1,0,0,0,1,0,0,0),
(0,1,0,0,0,1,0,0), (0,0,1,0,0,0,1,0) and (0,0,0,1,0,0,0,1).

We consider the evolution of such states through an
interferometer implementing the transformation described by
the Fourier matrix

ðUF
mÞl;q ¼

1ffiffiffiffi
m

p ei
2plq
m : ð1Þ

Such evolution results in the suppression of all output
configurations not fulfilling the equation

mod
Xn
l¼1

kl; n

 !
¼ 0; ð2Þ

where kl is the output mode of the lth photon. An interesting
application of suppression laws is to certify the presence of true
many-body granular interference during the evolution in the
interferometer, ruling out alternative hypotheses which would
result in similar output probability distributions. In particular, in
the case of Fourier matrices, the observation of the suppression
law (2) allows to certify that the sampled output distribution is
not produced by either distinguishable particles or a mean field
state (MF)27. The latter is defined as a single-particle state csj i of
the form

csj i ¼ 1ffiffiffi
n

p
Xn
r¼1

eiyr j sr
�� �; ð3Þ

with a random set of phases yr for each state, being jj sr i a
single-particle state occupying input mode jsr . This state
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reproduces macroscopic interference effects, such as bunching or
bosonic clouding19, and cannot be distinguished from true multi-
particle interference with criteria based on these features. Since it
is possible to efficiently simulate the evolution of a MF with a
classical algorithm27, it is of fundamental importance to assess the
ability of a validation scheme to discriminate such a state in the
context of an untrusted party claiming to perform a boson
sampling experiment. Hence, the MF represents an optimal test
bed for the certification protocol based on the suppression law
(see Fig. 1).

It is possible to quantify the degree of violation
D ¼ Nforbidden=Nevents of the suppression law as the number of
observed events in forbidden output states divided by the total
number of events27. If a Fock state is injected in a Fourier
interferometer, a violation D ¼ 0 would be observed. In
the case of distinguishable photons there is no suppression
law, and the violation would be simply the fraction of
suppressed outputs, each one weighted with the number of
possible arrangements of the n distinguishable particles in that
output combination. In the case of two-photon states, the
weighting factor is 2 for collision-free outputs and 1 otherwise,
and a degree of violation of 1/2 is expected (see Section
‘Observation of the suppression law’). In contrast, in the case of
two-photon MF, bunching effects occur leading to an expected
degree of violation of half the weighted fraction of suppressed
outputs (1/4 for two-photon MF). It has been shown that the
fraction of forbidden outputs is always large31. Hence, a
comparison of the observed value of D with the expected one
represents an efficient way, in terms of necessary experimental
runs, to discriminate between Fock states, distinguishable
particles states and MFs.

Realization of 3D qFFT interferometers. Let us now introduce
our experimental implementation of the qFFT. The general
method to realize an arbitrary unitary transformation using
linear optics was introduced by Reck et al.42, who provided a

decomposition of a unitary of dimension m as a sequence of
m(m–1)/2 beam splitters and phase shifters. However, in the
special case of Fourier matrices a more efficient method has been
proposed35,43, which takes advantage of their symmetries to
significantly reduce the number of linear optical elements
required. On the basis of the classical algorithm of Cooley and
Tukey44, who first introduced the fast Fourier transform
algorithm as a more efficient way to calculate the discrete
Fourier transform, Barak and Ben-Aryeh developed a quantum
analogue in the linear optics domain, leading to the concept of
qFFT. This approach, valid for 2p-dimensional Fourier matrices,
requires only (m/2)logm beam splitters and phase shifters, to be
compared with the O(m2) elements needed for the more general
Reck decomposition, thus enhancing the compactness and
scalability of the platform for a more reliable experimental
realization. The overall linear transformation on the optical
modes implemented by the qFFT circuit is naturally equivalent to
the transformation described by the Fourier matrix, hence
UqFFT

m ¼ UF
m.

Here we introduce a new methodology for an integrated
implementation of the qFFT, which exploits the 3D capabilities of
the femtosecond laser writing technique. The sequential structure
arising from the decomposition of the m-dimensional Fourier
matrix using the Barak and Ben-Aryeh algorithm is reproduced
by the consecutive layers shown in Fig. 2. The complex
arrangement of pairwise interactions necessary for the qFFT
method cannot be easily implemented using a planar architecture.
However, femtosecond laser writing technique allows to over-
come this issue exploiting the third dimension, arranging the
waveguides along the bidimensional sections of the integrated
chip.

The strategy can be outlined as follows (see also
Supplementary Note 1): the 2p modes are ideally placed on
the vertices of a p-dimensional hypercube; in each step of the
algorithm the vertices connected by parallel edges having one
specific direction are made to interact by a two-mode Hadamard
transformation, with proper phase terms. An optical inter-
ferometer implementing this procedure is thus composed of
log2m¼ p sections, each employing m/2 balanced beam splitters
and phase shifters.

We fabricated waveguide interferometers realizing the
Fourier matrix for m¼ 4 and 8 modes in borosilicate glass
chips using femtosecond laser micromachining36,37.
A schematic representation of these two interferometers is
given in Fig. 2. According to the scheme outlined above and by
exploiting the 3D capabilities of the fabrication technique, the
waveguides are placed, for what concerns the cross-section of
the device, on the vertices of a two-dimensional projection
of the p-dimensional hypercube (see also Supplementary Fig. 1).
3D directional couplers, with proper interaction length and
distance to achieve a balanced splitting, connect in each
step the required vertices. The insets of Fig. 2 show, at each
step i, which modes are connected by directional couplers
(Li) and the amount of phase shift that needs to be introduced in
specific modes (Pi). Phase shifters, where needed, are
implemented by geometrical deformation of the connecting
S-bends. Fan-in and fan-out sections at the input and output of
the devices allows interfacing with 127 mm spaced single-mode
fibre arrays. Note that in our device geometry, in each step, the
vertices to be connected are all at the same relative distance.
This means that, unless geometric deformations are designed
where needed, light travelling in different modes does not
acquire undesired phase delays. It is worth noting that the
geometric construction here developed is scalable to an arbitrary
number of modes with a number of elements increasing
as mlog2m.

Fock (F)
Distinguishable (D)

Mean field (MF)
Cyclic input

Unforbidden

Forbidden

Fourierierr
matrix

Fourier
matrix

MF

D

F

Figure 1 | Suppression law for Fock states in a Fourier interferometer.

Conceptual scheme of the protocol: the possible configurations of n

photons at the output of an m-mode interferometer can be divided into two

categories, unforbidden and forbidden, depending on whether they satisfy

or not the suppression condition (2), respectively. The pie charts show the

expected output statistics with different classes of particles, where green

and red areas represent events with unforbidden and forbidden outputs,

respectively. The injection of a cyclic Fock state (beige box) in an m-mode

Fourier interferometer results in total suppression of forbidden output

states. Cyclic states with distinguishable particles (blue box) show no

suppression, so that each output combination is equally likely to occur.

A mean field state (purple box), which reproduces some of the features of

bosonic statistics, shows suppression with highly reduced contrast.

Therefore, with a cyclic input the m-mode Fourier interferometer is able to

discriminate, through the measurement of degree of violation

D ¼ Nforbidden=Nevents, which of these three hypotheses the input state

belongs to.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10469 ARTICLE

NATURE COMMUNICATIONS | 7:10469 | DOI: 10.1038/ncomms10469 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


One- and two-photon measurements. The two implemented
interferometers of m¼ 4 and 8 modes are fed with single- and
two-photon states. The experimental set-up, preparing a biphoton
wave packet to be injected into the devices, is shown in Fig. 3.
Further details on the photon generation and detection scheme
are described in the Methods section. To test the validity of the
suppression law, we measured the number of coincidences at each
forbidden output combination injecting cyclic inputs with two
indistinguishable photons. The degree of violation D of the
suppression law could simply be evaluated with a counting
experiment. Alternatively, the same quantity D can be expressed
as a function of single-photon input–output probabilities and of
the HOM visibilities, defined as

Vi;j ¼
ND
i;j �NQ

i;j

ND
i;j

ð4Þ

where ND
i;j is the number of detected coincidences for distin-

guishable photons and N Q
i;j for indistinguishable photons. The

subscripts (i,j) are the indexes of the two output modes, for a
given input state. The degree of violation can therefore be
expressed as

D ¼ N forbidden

N events
¼ Pforbidden ¼

¼
P

ði;jÞforbidden
PQ
i;j ¼

P
ði;jÞforbidden

PD
i;jð1�Vi;jÞ ð5Þ

where PQ
i;j ðPD

i;jÞ are the probabilities of having photons in the
outputs i,j in the case of indistinguishable (distinguishable)
particles. Here PD

i;j can be obtained from single-particle
probabilities. The visibilities are measured by recording the
number of coincidences for each output combination as a
function of the temporal delay between the two injected photons.

For the four-mode device, we measured the full set of
4
2

� �2

¼ 36 collision-free input–output combinations, that is,

where the two photons exit from different output ports. These
contributions have been measured by recording the number of
coincidences for each combination of two outputs as a function of
the temporal delay between the two input photons. Because of the
law given by equation (2), we expect to observe four suppressed
outcomes (over six possible output combinations) for the two
cyclic input states (1,3) and (2,4). Since distinguishable photons
exhibit no interference, HOM dips in the coincidence patterns are
expected for the suppressed output states. Conversely, peaks are

expected in the non-suppressed output combinations. The
experimental results are shown in Fig. 4a, where the expected
pattern of four suppressions and two enhancements is
reported, with average visibilities of V supp ¼ 0:899 � 0:001 and
Venh ¼ � 0:951 � 0:004 for suppression and enhancement,
respectively.

For the cyclic inputs, we also measured the interference
patterns for the output contributions where the two photons exit
from the same mode. These terms have been measured by
inserting an additional symmetric beam splitter on each
output mode, and by connecting each of its two outputs to a
single-photon detector. These cases correspond to a full-bunching
scenario with n¼ 2, and a HOM peak with V¼ � 1 visibility is
expected independently from the input state and from the unitary
operation45. This feature has been observed for the tested inputs,
where an average visibility of Vbunch ¼ � 0:969 � 0:024 has
been obtained over all full-bunching combinations. Note that the
measured two-mode correlation matrix is not compatible with
classical light (see Supplementary Note 4).

The existence of a general rule for the prediction of suppressed
output combinations when injecting a cyclic Fock state in a
Fourier interferometer is due to the intrinsic symmetry of the
problem, as opposed to the general boson sampling scenario13.
Suppressed outputs for non-cyclic inputs can be predicted by

Phase PhaseDirectional coupler Directional coupler

4
3

2

1

4

3

2

1

31

6

42758

L1

L2

L1

L2

L3

P1

P2

P1

3
1
4
2
7
5
8

6

a bL1 L2

42

31

P1
L1 L2P1 L3P2

3: � /2
7: �/2
8: �/2 6: �/4

8: 3�/4

4: �/2

42

31

73

51

84

62
73

51

84

62
73

51

84

62

Figure 2 | Schematic representation of the structure of the integrated devices. Internal structure of the four-mode (a) and eight-mode (b) integrated

interferometers implementing the qFFT over the optical modes. In the eight-mode case, the Barak and Ben-Aryeh algorithm requires an additional

relabelling of the output modes (not shown in the figure), namely 225 and 427, to obtain the effective Fourier transformation. The mode arrangement

has been chosen in a way to minimize bending losses. The insets show the actual disposition of the waveguides in the cross-section of the devices. The

modes coupled together in each step (Li) of the interferometer are joined by segments. The implemented phase shifts in each step (Pi) are also indicated.
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Figure 3 | Experimental apparatus for input state preparation. (a) The

photon source (IF, HWP, PBS, PC, PDC, DL and SMF). (b) Photon injection

(extraction) before (after) the evolution through the interferometer. DL,

delay lines with motorized stages; FA, fibre array; HWP, half-wave plate; IF,

interferential filter; PBS, polarizing beam splitter; PC, polarization

compensator; PDC, parametric downconversion; SMF, single-mode fibre.
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calculating the permanent of the submatrix given by the
intersection of the columns and rows of UF corresponding to
the occupied input and output modes, respectively. The complete
set of measured dips and peaks is shown in Fig. 4a, highlighting
the symmetry in the Fourier transform interference pattern. The
injection of the non-cyclic input states has been employed for the
complete reconstruction of the chip action ~UqFFT

4 , using a data set
statistically independent from the one adopted to observe the
suppression law. The adopted reconstruction algorithm, which
exploits knowledge on the internal structure of the
interferometers (specified in Fig. 2), works in two steps. In a
first step, the power-splitting ratios measured with classical light
are employed to extrapolate the transmissivities of the directional
couplers. In a second step, the two-photon visibilities for the
non-cyclic inputs are used to retrieve the values of the fabrication
phases. In both steps the parameters are obtained by minimizing
a suitable w2 function. The results are shown in Fig. 4c. The
fidelity between the reconstructed unitary ~UqFFT

4 and the
theoretical Fourier transform UF

4 is F ¼ 0:9822 � 0:0001, thus
confirming the high quality of the fabrication process. The error
in the estimation of the fidelity is obtained through a Monte
Carlo simulation, properly accounting for the degree of
distinguishability of the photons with a rescaling factor in the
visibilities.

For the eight-mode chip we recorded all the
8
2

� �
¼ 28 two-

photon coincidence patterns, as a function of the relative delay
between the input photons, for each of the four collision-free
cyclic inputs and for one non-cyclic input. The reconstruction of
the actual unitary transformation ~UqFFT

8 implemented has been
performed with the same algorithm of the four-modes, by using
the power-splitting ratios measured with classical light and the
two-photon visibilities for one non-cyclic input. The latter
has been chosen in a way to maximize the sensitivity

of the measurements with respect to the five fabrication phases.
The results are shown in Fig. 5. The fidelity between the
reconstructed unitary ~UqFFT

8 and the ideal eight-mode Fourier
transform UF

8 is F ¼ 0:9527 � 0:0006. More details on the
reconstruction algorithm can be found in the Supplementary
Note 3.

Observation of the suppression law. The suppression of events
which do not satisfy equation (2) is fulfilled only when two perfectly
indistinguishable photons are injected in a cyclic input of a perfect
Fourier interferometer. In such a case, we would have the sup-
pression of all output states whose sum of the indexes corresponding
to the occupied modes is odd. For the four-mode (eight-mode)
interferometer, this corresponds to four (16) suppressed and two
(12) non-suppressed collision-free outputs (each one given by two
possible arrangements of the two distinguishable photons), plus four
(8) terms with two photons in the same output, each one corre-
sponding to a single possible two-photon path.

The expected violation for distinguishable particles can be
obtained from classical considerations. Let us consider the
case with n¼ 2. The two distinguishable photons evolve
independently from each other, and the output distribution is
obtained by classically mixing single-particle probabilities. All
collision-free terms are equally likely to occur with probability
q¼ 2/m2, while full-bunching events occur with probability
q0 ¼ q/2¼ 1/m2. The degree of violation DD can then be obtained
by multiplying the probability q by the number of forbidden
output combinations. As a result, we expect a violation degree of
DD ¼ 0:5 for distinguishable two-photon states. The evaluation
of the expected value for a MF state, which is due to single-
particle bosonic statistic effects, requires different calculations27.
It can be shown that for n¼ 2 the degree of violation is
DMF ¼ 0:25.
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Figure 4 | Suppression law in a four-mode qFFT integrated chip. (a) Complete set of 36 measured coincidence patterns (raw experimental data) for all

input–output combinations in the four-mode chip. For each input–output combination, the measured coincidence pattern as a function of the time delay is

shown (points: experimental data, lines: best-fit curves). Cyclic inputs (1,3) and (2,4) exhibit enhancement (green) and suppression (red) on cyclic and non-

cyclic outputs, respectively. For all points, error bars are due to the Poissonian statistics of the events. In each subplot the measured visibility with

corresponding error and the sample size are reported. For each visibility, the error is obtained through a Monte Carlo simulation by averaging over 3,000

simulated data sets. In each subplot the zero level coincides with the baseline, while a dashed line represents the number of coincidence events in the

distinguishable limit. (b) HOM visibilities for all 36 input–output configurations. (left to right) Experimental measured visibilities (VqFFT, obtained

from raw experimental data), visibilities calculated from the reconstructed unitary (Vrec), and visibilities calculated from the theoretical unitary (VF).

(c) Representation of the reconstructed experimental transformation ~UqFFT
4 , and comparison with UF

4. Coloured disks represent the moduli of the reconstructed

matrix elements (all equal to 4� 1/2 for UF
4). Arrows represent the phases of the unitary matrix elements (green: reconstructed unitary, blue: Fourier matrix).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10469 ARTICLE

NATURE COMMUNICATIONS | 7:10469 | DOI: 10.1038/ncomms10469 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


For each of the cyclic input, we have evaluated here the
violation degree Dobs resulting from collected data. By measuring
the coincidence pattern as a function of the path difference

Dx¼ cDt between the two photons, and thus by tuning their
degree of distinguishability, we could address the transition from
distinguishable to indistinguishable particles. The value of Dobs as
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Figure 5 | Suppression law in a eight-mode qFFT integrated chip. (a) Set of 28 measured coincidence patterns (raw experimental data), corresponding to

all collision-free output combinations for the input (2,6) of the eight-mode interferometer. For each output combination, the measured coincidence pattern

as a function of the time delay is shown (points: experimental data, lines: best-fit curves). Red or green backgrounds correspond to dips and peaks,

respectively. For all points, error bars are due to the Poissonian statistics of the events. In each subplot the measured visibility with corresponding error and

the sample size are reported. For each visibility, the error is obtained through a Monte Carlo simulation by averaging over 3,000 simulated data sets. In

each subplot the zero level coincides with the baseline, while a dashed line represents the number of coincidence events in the distinguishable limit.

(b) Average visibilities of dips (red bars) and peaks (green bars) observed for the four collision-free cyclic inputs [(1,5), (2,6), (3,7), (4,8)]. Darker regions

correspond to error bars of ±1 s.d. (c) Representation of the reconstructed experimental transformation ~UqFFT
8 , and comparison with UF

8. Coloured disks

represent the moduli of the reconstructed matrix elements (all equal to 8� 1/2 for UF
8). Arrows represent the phases of the unitary matrix elements (green:

reconstructed unitary, blue: Fourier matrix).
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Figure 6 | Measured violations. Observed violationsDobs as a function of the path difference |Dx|¼ c|Dt| between the two photons. Blue shaded regions in

the plots correspond to the cases where the hypothesis of distinguishable particles can be ruled out. Red regions correspond to the cases when both the

hypotheses of distinguishable particles and mean field state can be ruled out, and true two-particle interference is present. (a) Data for the four-mode

interferometer. Blue points: input (1,3). Red points: input (2,4). Blue solid line: theoretical prediction for input (1,3). Red solid line: theoretical prediction for

input (2,4). Black dashed line: theoretical prediction for a Fourier matrix. (b) Data for the eight-mode interferometer. Blue points: input (1,5). Red points:

input (2,6). Green points: input (3,7). Magenta points: input (4,8). Coloured solid lines: corresponding theoretical predictions for the different inputs. Black

dashed line: theoretical prediction for a Fourier matrix. Tables: violations Dobsð0Þ at Dx¼0 and discrepancies (in sigmas) with the expected values for

distinguishable particles (DD) and MFs (DMF), for the cyclic inputs of the two interferometers. Dobsð0Þ are calculated following formula (5), while expected

values for the other two cases are DD ¼ 0:5 and DMF ¼ 0:25. Error bars in all experimental quantities are due to the Poissonian statistics of measured

events. All theoretical predictions in solid lines are calculated from the reconstructed unitaries, obtained from different sets of experimental data to ensure

statistical independence. See Supplementary Note 2 for the modelling of imperfect state preparation.
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a function of Dx has been obtained as
P

ði;jÞ forbidden P
D
i;j ðNDx

i;j =N
D
i;j Þ,

where NDx
i;j and ND

i;j are the number of measured coincidences for
a given value of Dx and for distinguishable particles respectively.
Two different regions can be identified. For intermediate values of
Dx with respect to the coherence length of the photons, the
measured data fall below the threshold DD, and hence the
hypothesis of distinguishable particles can be ruled out. Then,
for smaller values of the path difference up to Dx-0, true
two-photon interference can be certified since both hypothesis of
distinguishable particles and MF state can be ruled out. The
maximum violation occurring at Dx¼ 0 delay can be evaluated
using equation (5). The experimental results retrieved from the
protocol are shown in the tables of Fig. 6, in which we compare
the values Dobsð0Þ with the expected values for distinguishable
particles DD and for a MF state DMF. As shown for our
implementation, the robustness of the protocol is ensured by the
high number of s.d. separating the values in each comparison,
thus unambiguously confirming the success of the certification
protocol. In conclusion, the alternative hypotheses of distinguish-
able particles and of a MF state can be ruled out for all
experiments.

Discussion
We have reported on the experimental observation of the
suppression law on specific output combinations of a Fourier
transformation due to quantum interference between photons.
The observation of the suppression effect allowed us to rule out
alternative hypotheses to the Fock state. The use of a novel
implementation architecture, enabled by the 3D capabilities of
femtosecond laser micromachining, extends the scalability of this
technique to larger systems with lower experimental effort with
respect to other techniques. While the presented architecture is
designed to implement a Fourier matrix for a number of modes
equal to m¼ 2p, a generalization of the approach can be obtained
by adopting a building block different from the beam splitter. For
devices of odd dimension, for instance, such a tool can be
provided by the tritter transformation39. At the same time, the
universality of a generalized HOM effect with an arbitrary
number of particles and modes is expected to make it a pivotal
tool in the diagnostic and certification of quantum photonic
platforms. Boson sampling represents a key example, since the
scalability of the technique is expected to allow efficient
certification of devices outperforming their classical
counterparts. An interesting open problem is whether the
computational hardness of boson sampling is maintained if
the Haar-randomness condition is relaxed46, and thus which is
the minimal interferometer architecture required for an evidence
of post-classical computation.

Fourier matrices can find application in different contexts. For
instance, multiport beam splitters described by the Fourier matrix
can be employed as building blocks for multiarm interferometers,
which can be adopted for quantum-enhanced single and multi-
phase estimation protocols47. This would also allow the
measurement of phase gradients with precision lower than the
shot-noise limit48. Other fields where Fourier matrices are
relevant include quantum communication scenarios49,
observation of two-photon correlations as a function of
geometric phase50, fundamental quantum information theory
including mutually unbiased bases51, as well as entanglement
generation52.

Methods
Waveguide device fabrication. Waveguide interferometers are fabricated in
EAGLE2000 (Corning Inc.) glass chips. To inscribe the waveguides, laser pulses
with 300 fs duration, 220 nJ energy and 1MHz repetition rate from an Yb:KYW
cavity dumped oscillator (wavelength 1,030 nm) are focused in the bulk of the glass,

using a 0.6 NA microscope objective. The average depth of the waveguides, in the
3D interferometric structure, is 170 mm under the sample surface. The fabricated
waveguides yield single-mode behaviour at 800 nm wavelength, with about
0.5 dB cm� 1 propagation losses. The central part of the 3D interferometer, which
includes all the relevant couplers, have a cross-section of about 50 mm� 50mm
(95 mm� 95mm) for a length of 9.0mm (14.7mm) in the four-(eight-)modes case.
The length of each fan-in and fan-out section, needed to bring the waveguides at
127 mm relative distance, is 7.8mm (13.2mm).

Photon generation and manipulation. The generation of two-photon states is
performed by pumping a 2-mm long BBO crystal with a 392.5 nm wavelength Ti:Sa
pulsed laser, with average power of 750mW, which generates photons at 785 nm
with a type II parametric downconversion process. The two photons are spectrally
filtered by means of 3 nm interferential filters, and coupled into single-mode fibres.
The indistinguishability of the photons is then ensured by a polarization com-
pensation stage, and by propagation through independent delay lines (used to
adjust the degree of temporal distinguishability) before injection within the
interferometer via a single-mode fibre array. After the evolution through the
integrated devices, photons are collected via a multimode fibre array. The detection
system consists of four (8) single-photon avalanche photodiodes used for the
four- (eight-) modes chip. An electronic data acquisition system allowed us to
detect coincidences between all pairs of output modes. Typical coincidence rates
for each collision-free output combination with distinguishable photons amounted
toB70–80Hz (for the four-mode chip) andB10–20Hz (for the eight-mode chip).
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