3 research outputs found
Diffusion on a lattice: transition rates, interactions and memory effects
We analyze diffusion of particles on a two dimensional square lattice. Each
lattice site contains an arbitrary number of particles. Interactions affect
particles only in the same site, and are macroscopically represented by the
excess chemical potential. In a recent work, a general expression for
transition rates between neighboring cells as functions of the excess chemical
potential was derived. With transition rates, the mean field tracer
diffusivity, , is immediately obtained. The tracer diffusivity, , contains the correlation factor , representing memory
effects. An analysis of the joint probability of having given numbers of
particles at different sites when a force is applied to a tagged particle
allows an approximate expression for to be derived. The expression is
applied to soft core interaction (different values for the maximum number of
particles in a site are considered) and extended hard core
Disease spreading with social distancing: A prevention strategy in disordered multiplex networks
The frequent emergence of diseases with the potential to become threats at local and global scales, such as influenza A(H1N1), SARS, MERS, and recently COVID-19 disease, makes it crucial to keep designing models of disease propagation and strategies to prevent or mitigate their effects in populations. Since isolated systems are exceptionally rare to find in any context, especially in human contact networks, here we examine the susceptible-infected-recovered model of disease spreading in a multiplex network formed by two distinct networks or layers, interconnected through a fraction q of shared individuals (overlap). We model the interactions through weighted networks, because person-to-person interactions are diverse (or disordered); weights represent the contact times of the interactions. Using branching theory supported by simulations, we analyze a social distancing strategy that reduces the average contact time in both layers, where the intensity of the distancing is related to the topology of the layers. We find that the critical values of the distancing intensities, above which an epidemic can be prevented, increase with the overlap q. Also we study the effect of the social distancing on the mutual giant component of susceptible individuals, which is crucial to keep the functionality of the system. In addition, we find that for relatively small values of the overlap q, social distancing policies might not be needed at all to maintain the functionality of the system.Fil: Pérez, Ignacio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Di Muro, Matias Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: la Rocca, Cristian Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Braunstein, Lidia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentin