39 research outputs found

    Unexpectedly fast transfer of positron-emittable artificial substrate into N-terminus of peptide/protein mediated by wild-type L/F-tRNA-protein transferase

    Get PDF
    This article demonstrates the fastest enzymatic introduction of a positron emission tomography (PET) probe into acceptor peptides/proteins. It is site-specifically introduced at the basic N-terminus of the acceptors by using L/F-transferase in combination with aminoacyl-tRNA synthetase, namely the NEXT-A/PET reaction. Estimated from kinetic analysis, the transfer efficiency of O-(2-fluoromethyl)-L-tyrosine as an artificial amino acid PET probe mediated by the wild-type transferase is almost as good as that of the natural substrate, phenylalanine

    Selection of turning-on fluorogenic probe as protein-specific detector obtained via the 10BASEd-T

    Get PDF
    In order to obtain a molecular probe for specific protein detection, we have synthesized fluorogenic probe library of vast diversity on bacteriophage T7 via the gp10 based-thioetherification (10BASEd−T). A remarkable turning-on probe which is excitable by widely applicable visible light was selected from the library

    Selection of Color-Changing and Intensity-Increasing Fluorogenic Probe as Protein-Specific Indicator Obtained via the 10BASEd-T

    Get PDF
    To obtain a molecular probe for specific protein detection, we have synthesized fluorogenic probe library of vastdiversity on bacteriophage T7 via the gp10 based-thioetherificaion (10BASEd-T). A remarkable color-changing and turning-on probewas selected from the library, and its physicochemical properties upon target-specific binding were obtained. Combination analysesof fluorescence emission titration, isothermal titration calorimetry (ITC), and quantitative saturation-transfer difference (STD) NMRmeasurements followed by in silico docking simulation, rationalized most plausible geometry of the ligand-protein interaction

    Fluorescent “keep-on” type pharmacophore obtained from dynamic combinatorial library of Schiff bases

    Get PDF
    We established a novel principle for fluorescence detection of a target protein. A lowmolecular-weight fluorescent pharmacophore, as a targeted probe, was selected from a dynamic combinatorial library of Schiff bases. The pharmacophore retains its fluorescence when bound to the hydrophobic site of the target, whereas it loses it because of hydrolysis when unbound

    Inhibition of thrombin activity by a covalent-binding aptamer and reversal by the complementary strand antidote

    Get PDF
    Alleviating the potential risk of irreversible adverse drug effects has been an important and challenging issue for the development of covalent drugs. Here we created a DNA-aptamer-type covalent drug by introducing a sulfonyl fluoride warhead at appropriate positions of the thrombin binding aptamer to create weaponized covalent drugs. We showed the de-activation of thrombin by the novel modality, followed by its re-activation by the complementary strand antidote at an arbitrary time. We envision that such on-demand reversal of covalent drugs will alleviate the major concern of potentially irreversible ADEs and accelerate the translational application of covalent aptamer drugs

    Medium-firm drug-candidate library of cryptand-like structures on T7: Design and selection of strong binder for Hsp90

    Get PDF
    We designed and synthesized a medium-firm drug-candidate library of cryptand-like structures possessing a randomized peptide linker on the bacteriophage T7. From the macrocyclic library with a 10^9 diversity, we obtained a binder toward a cancer-related protein (Hsp90) with an antibody-like strong affinity (K_D = 62 nM) and the binding was driven by the enthalpy. The selected supramolecular ligand inhibited Hsp90 activity by site-specific binding outside of the well-known ATP-binding pocket on the N-terminal domain (NTD)

    A Gammaherpesvirus Cooperates with Interferon-alpha/beta-Induced IRF2 to Halt Viral Replication, Control Reactivation, and Minimize Host Lethality

    Get PDF
    The gammaherpesviruses, including Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), establish latency in memory B lymphocytes and promote lymphoproliferative disease in immunocompromised individuals. The precise immune mechanisms that prevent gammaherpesvirus reactivation and tumorigenesis are poorly defined. Murine gammaherpesvirus 68 (MHV68) is closely related to EBV and KSHV, and type I (alpha/beta) interferons (IFNαβ) regulate MHV68 reactivation from both B cells and macrophages by unknown mechanisms. Here we demonstrate that IFNβ is highly upregulated during latent infection, in the absence of detectable MHV68 replication. We identify an interferon-stimulated response element (ISRE) in the MHV68 M2 gene promoter that is bound by the IFNαβ-induced transcriptional repressor IRF2 during latency in vivo. The M2 protein regulates B cell signaling to promote establishment of latency and reactivation. Virus lacking the M2 ISRE (ISREΔ) overexpresses M2 mRNA and displays uncontrolled acute replication in vivo, higher latent viral load, and aberrantly high reactivation from latency. These phenotypes of the ISREΔ mutant are B-cell-specific, require IRF2, and correlate with a significant increase in virulence in a model of acute viral pneumonia. We therefore identify a mechanism by which a gammaherpesvirus subverts host IFNαβ signaling in a surprisingly cooperative manner, to directly repress viral replication and reactivation and enforce latency, thereby minimizing acute host disease. Since we find ISREs 5′ to the major lymphocyte latency genes of multiple rodent, primate, and human gammaherpesviruses, we propose that cooperative subversion of IFNαβ-induced IRFs to promote latent infection is an ancient strategy that ensures a stable, minimally-pathogenic virus-host relationship

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
    corecore