13 research outputs found

    Beneficial effects of nasal high flow oxygen therapy after weaning from non-invasive ventilation: A prospective observational study

    Get PDF
    It remains unknown whether application of nasal high flow (NHF) is effective after liberation from non-invasive ventilation (NIV). This study was aimed at investigating the effect of NHF in patients ready for weaning from NIV. With institutional ethic committee approval, patients receiving NIV due to hypoxemic respiratory failure for more than 24 hours were enrolled. After passing the weaning criteria with continuous positive airway pressure (CPAP) mode [fraction of inspiratory oxygen (FIO2) ≦0.5, positive end expiratory pressure (PEEP) 4 cmH2O], patients received NHF (Flow 50 L/min, FIO2 ≦0.5) immediately after liberation from NIV. Before the initiation of the study, eight sequential patients who received oxygen via face mask after NIV treatment, served as the historical control. Respiratory parameters [partial pressure of arterial oxygen (PaO2) to FIO2 ratio (P/F ratio), respiratory rate (RR)] 1 hour after liberation from NIV were evaluated with those during NIV as the primary outcome. The frequency of rescue NIV therapy, intubation, and respiratory failure were also recorded. Nine eligible patients received NHF therapy after liberation from NIV. P/F ratio and RR did not change significantly compared with those during NIV (231 ± 43.6 versus 250.7 ± 34.2 mmHg, 20.8 ± 2.3 versus 21 ± 1.6 /min), while P/F ratio decreased significantly in the historical control group (194.3 ± 20.1 versus 255.9 ± 58.1 mmHg, p=0.013). Rescue NIV therapy, intubation, and respiratory failure never occurred in the NFH group, although two patients received NIV rescue therapy, of whom one was intubated in the historical control. NHF after liberation from NIV might be effective in patients recovering from hypoxemic respiratory failure

    Paradoxical Regulation of Human FGF21 by Both Fasting and Feeding Signals: Is FGF21 a Nutritional Adaptation Factor?

    Get PDF
    Fibroblast growth factor 21 (FGF21) has recently emerged as a metabolic hormone involved in regulating glucose and lipid metabolism in mouse, but the regulatory mechanisms and actions of FGF21 in humans remain unclear. Here we have investigated the regulatory mechanisms of the human FGF21 gene at the transcriptional level. A deletion study of the human FGF21 promoter (−1672 to +230 bp) revealed two fasting signals, including peroxisome proliferator-activated receptor α (PPARα) and glucagon signals, that independently induced human FGF21 gene transcription in mouse primary hepatocytes. In addition, two feeding signals, glucose and xylitol, also dose-dependently induced human FGF21 gene transcription and mRNA expression in both human HepG2 cells and mouse primary hepatocytes. FGF21 protein expression and secretion were also induced by high glucose stimulation. The human FGF21 promoter (−1672 to +230 bp) was found to have a carbohydrate-responsive element at −380 to −366 bp, which is distinct from the PPAR response element (PPRE). Knock-down of the carbohydrate response element binding protein by RNAi diminished glucose-induced human FGF21 transcription. Moreover, we found that a region from −555 to −443 bp of the human FGF21 promoter region exerts an important role in the activation of basic transcription. In conclusion, human FGF21 gene expression is paradoxically and independently regulated by both fasting and feeding signals. These regulatory mechanisms suggest that human FGF21 is increased with nutritional crisis, including starvation and overfeeding

    Osteoclast-forming suppressing compounds, gargalols A, B, and C, from the edible mushroom Grifola gargal

    No full text
    Three novel sterols, gargalolsA–C (1–3), and four known ones were isolated from the ediblemushroomGrifolagargal. The structures of 1–7 were determined or identified by the interpretation of spectroscopic data. Compounds1–5 suppressed the formation of osteoclast without toxicity.autho

    Makomotines A to D from Makomotake, Zizania latifolia infected with Ustilago esculenta

    No full text
    NOTICE: this is the author’s version of a work that was accepted for publication in Tetrahedron Letters.Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document.Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Tetrahedron Letters, Volume 55, Issue 26, 25 June 2014. DOI 10.1016/j.tetlet.2014.04.125autho

    Glucose and xylitol induced FGF21 gene expression in HepG2 and mouse primary hepatocytes.

    No full text
    <p>A: Changes in FGF21 gene expression stimulated by the indicated dose of glucose for 6 h in HepG2. B: Changes in FGF21 protein abundance in HepG2 cells stimulated by indicated dose of glucose for 24 h. C: Changes in <i>FGF21</i>, <i>L-pk</i>, and <i>Fasn</i> gene expression stimulated by 10 mM glucose (Glu), xylitol (Xyl) or mannitol (Man) for 6 h in mouse primary hepatocytes. The relative mRNA amount for each gene treated with 5 mM of glucose (A), or NT (non-treatment) (C) was set as 1.0. D: Changes in FGF21 concentration in the cultured media of mouse primary hepatocytes stimulated by 3 mM glucose (G3) or 25 mM glucose (G25) for indicated time. Data represent mean ± SE (n = 3). †: Concentration-dependent effects were observed by regression analysis, p<0.05. *: p<0.05 as compared to NT, mannitol and G3 stimulation.</p
    corecore