6,498 research outputs found

    The scenario of two-dimensional instabilities of the cylinder wake under EHD forcing: A linear stability analysis

    Get PDF
    We propose to study the stability properties of an air flow wake forced by a dielectric barrier discharge (DBD) actuator, which is a type of electrohydrodynamic (EHD) actuator. These actuators add momentum to the flow around a cylinder in regions close to the wall and, in our case, are symmetrically disposed near the boundary layer separation point. Since the forcing frequencies, typical of DBD, are much higher than the natural shedding frequency of the flow, we will be considering the forcing actuation as stationary. In the first part, the flow around a circular cylinder modified by EHD actuators will be experimentally studied by means of particle image velocimetry (PIV). In the second part, the EHD actuators have been numerically implemented as a boundary condition on the cylinder surface. Using this boundary condition, the computationally obtained base flow is then compared with the experimental one in order to relate the control parameters from both methodologies. After validating the obtained agreement, we study the Hopf bifurcation that appears once the flow starts the vortex shedding through experimental and computational approaches. For the base flow derived from experimentally obtained snapshots, we monitor the evolution of the velocity amplitude oscillations. As to the computationally obtained base flow, its stability is analyzed by solving a global eigenvalue problem obtained from the linearized Navier–Stokes equations. Finally, the critical parameters obtained from both approaches are compared

    Thermal conductivity of Mg-doped CuGeO_3 at very low temperatures: Heat conduction by antiferromagnetic magnons

    Full text link
    Thermal conductivity \kappa is measured at very low temperatures down to 0.28 K for pure and Mg-doped CuGeO_3 single crystals. The doped samples carry larger amount of heat than the pure sample at the lowest temperature. This is because antiferromagnetic magnons appear in the doped samples and are responsible for the additional heat conductivity, while \kappa of the pure sample represents phonon conductivity at such low temperatures. The maximum energy of the magnon is estimated to be much lower than the spin-Peierls-gap energy. The result presents the first example that \kappa at very low temperatures probes the magnon transport in disorder-induced antiferromagnetic phase of spin-gap systems

    Cooperative ordering of gapped and gapless spin networks in Cu2_2Fe2_2Ge4_4O13_{13}

    Full text link
    The unusual magnetic properties of a novel low-dimensional quantum ferrimagnet Cu2_2Fe2_2Ge4_4O13_{13} are studied using bulk methods, neutron diffraction and inelastic neutron scattering. It is shown that this material can be described in terms of two low-dimensional quantum spin subsystems, one gapped and the other gapless, characterized by two distinct energy scales. Long-range magnetic ordering observed at low temperatures is a cooperative phenomenon caused by weak coupling of these two spin networks.Comment: 4 pages, 4 figure

    Neutron Diffraction Study of the Pressure-Induced Magnetic Ordering in the Spin Gap System TlCuCl3_3

    Full text link
    Neutron elastic scattering measurements have been performed under the hydrostatic pressure in order to investigate the spin structure of the pressure-induced magnetic ordering in the spin gap system TlCuCl3_3. Below the ordering temperature TN=16.9T_{\rm N}=16.9 K for the hydrostatic pressure P=1.48P=1.48 GPa, magnetic Bragg reflections were observed at the reciprocal lattice points {\mib Q}=(h, 0, l) with integer hh and odd ll, which are equivalent to those points with the lowest magnetic excitation energy at ambient pressure. This indicates that the spin gap closes due to the applied pressure. The spin structure of the pressure-induced magnetic ordered state for P=1.48P=1.48 GPa was determined.Comment: 4 pages, 3 figures, 3 eps files, jpsj2.cls styl

    New connection formulae for some q-orthogonal polynomials in q-Askey scheme

    Get PDF
    New nonlinear connection formulae of the q-orthogonal polynomials, such continuous q-Laguerre, continuous big q-Hermite, q-Meixner-Pollaczek and q-Gegenbauer polynomials, in terms of their respective classical analogues are obtained using a special realization of the q-exponential function as infinite multiplicative series of ordinary exponential function

    Enhancing the spectral gap of networks by node removal

    Full text link
    Dynamics on networks are often characterized by the second smallest eigenvalue of the Laplacian matrix of the network, which is called the spectral gap. Examples include the threshold coupling strength for synchronization and the relaxation time of a random walk. A large spectral gap is usually associated with high network performance, such as facilitated synchronization and rapid convergence. In this study, we seek to enhance the spectral gap of undirected and unweighted networks by removing nodes because, practically, the removal of nodes often costs less than the addition of nodes, addition of links, and rewiring of links. In particular, we develop a perturbative method to achieve this goal. The proposed method realizes better performance than other heuristic methods on various model and real networks. The spectral gap increases as we remove up to half the nodes in most of these networks.Comment: 5 figure

    BiCu2_2VO6_6: a new narrow-band spin-gap material

    Full text link
    A new spin-ladder family material BiCu2_2VO6_6 is studied by means of the magnetic susceptibility, heat capacity and neutron inelastic scattering measurements on powder sample. Singlet ground state and a finite spin gap are confirmed by thermal-activated type susceptibility and by distinct peak at 16 meV in spin excitation. Triple narrow band structure in spin excitation spectrum, probably due to complex crystal structure, is observed and the possibility of weakly-interacting spin-cluster system is discussed

    Correlations and Omori law in Spamming

    Full text link
    The most costly and annoying characteristic of the e-mail communication system is the large number of unsolicited commercial e-mails, known as spams, that are continuously received. Via the investigation of the statistical properties of the spam delivering intertimes, we show that spams delivered to a given recipient are time correlated: if the intertime between two consecutive spams is small (large), then the next spam will most probably arrive after a small (large) intertime. Spam temporal correlations are reproduced by a numerical model based on the random superposition of spam sequences, each one described by the Omori law. This and other experimental findings suggest that statistical approaches may be used to infer how spammers operate.Comment: Europhysics Letters, to appea

    Structural Critical Scattering Study of Mg-Doped CuGeO3

    Full text link
    We report a synchrotron x-ray scattering study of the diluted spin-Peierls (SP) material Cu_(1-x)Mg_xGeO_3. We find that for x>0 the temperature T_m at which the spin gap is established is significantly higher than the temperature T_s at which the SP dimerization attains long-range order. The latter is observed only for xx_c the SP correlation length quickly decreases with increasing x. We argue that impurity-induced competing interactions play a central role in these phenomena.Comment: 5 pages, 4 embedded eps figures, to appear in PR
    • …
    corecore