26 research outputs found

    Differential modulation of intracellular Ca2+ responses associated with calcium-sensing receptor activation in renal collecting duct cells.

    Get PDF
    In this work, we studied G protein-coupled Extracellular Calcium Sensing Receptor (CaR) signaling in mouse cortical collecting duct cells (MCD4) expressing endogenous CaR. Intracellular [Ca2+] measurements performed with real time video imaging revealed that CaR stimulation with 5mM Ca2+, 300µM Gd3+ and with 10µM of specific allosteric modulator NPS-R 568, all resulted in an increase in [Ca2+]i although displaying different features. Specifically, Ca2+ as well as stimulation with NPS-R 568 induced a rapid peak of [Ca2+]i while stimulation with Gd3+ induced transient intracellular Ca2+ oscillations. PLC inhibition completely abolished any [Ca2+]i increase after stimulation with CaR agonists. Inhibition of Rho or Rho kinase (ROK) abolished [Ca2+]i oscillations induced by Gd3+, while the peak induced by high Ca2+ was similar to control. Conversely, emptying the intracellular calcium stores abolished the response to Gd3+. On the other hand, the inhibition of calcium influx did not alter calcium changes. We conclude that in our cell model, CaR stimulation with distinct agonists activates two distinct transduction pathways, both PLC-dependent. The transient cytosolic Ca2+ oscillations produced by Gd3+ are modulated by Rho-Rho kinase signaling, whereas the rapid peak of intracellular Ca2+ in response to 5mM [Ca2+]o is mainly due to PLC/IP3 pathway activation

    Integrin signaling modulates AQP2 trafficking via Arg-Gly-Asp (RGD) motif.

    Get PDF
    Aquaporin-2 (AQP2) increases the water permeability of renal collecting ducts in response to vasopressin. Vasopressin stimulation is accompanied by a profound remodeling of actin cytoskeleton whose dynamics are regulated by crosstalk between intracellular and extracellular signals. Here, we report that AQP2 contains a conserved RGD domain in its external C-loop. Co-immunoprecipitation experiments demonstrated that AQP2 binds integrin β1 in renal tissue and in MCD4 cells. To investigate the role of this interaction on AQP2 trafficking, cells were exposed to synthetic RGD-containing peptides, GRGDNP or GRGDSP, able to bind certain integrins. Incubation with these peptides increased the membrane expression of AQP2 in the absence of hormonal stimulation as assessed by confocal analysis and cell surface biotinylation. To identify the signals underlying the effects of peptides on AQP2 trafficking, some possible intracellular messengers were evaluated. Exposure of MCD4 cells to GRGDNP increased intracellular cAMP as assessed by FRET studies while GRGDSP increased intracellular calcium concentration. Taken together, these data propose integrins as new players controlling the cellular localization of AQP2, via two distinct signal transduction pathways dependent on cAMP and calcium respectively

    Rosiglitazone promotes AQP2 plasma membrane expression in renal cells via a Ca-dependent/cAMP-independent mechanism.

    Get PDF
    Background/Aims: Thiazolidinediones are highly beneficial in the treatment of type II diabetes. However, they are also associated with edema and increased risk of congestive heart failure. Several studies demonstrated that rosiglitazone (RGZ) increases the abundance of aquaporin-2 (AQP2) at the plasma membrane of renal cells. The aim of this study was to investigate whether RGZ might activate a transduction pathway facilitating AQP2 membrane accumulation in renal cells. Methods: We analyzed the effect of RGZ on renal AQP2 intracellular trafficking in MCD4 renal cells by confocal microscopy and apical surface biotinylation. Cytosolic Ca2+ dynamics were measured by a video-imaging approach in single cell. Transient Receptor Potential (TRP) channels expression was determined by RT-PCR. Results: We showed that in MCD4 cells, short-term exposure to RGZ dramatically increases the amount of apically expressed AQP2 independently on cAMP production, PKA activation and AQP2 phosphorylation. RGZ elicited a cytosolic Ca2+ transient due to Ca2+ influx prevented by ruthenium red, suggesting the involvement of TRP plasma membrane channels. We identified TRPV6 as the possible candidate mediating this effect. Conclusions: Taken together these results provide a possible molecular mechanism explaining the increased AQP2 membrane expression under RGZ treatment: in renal cells RGZ elicits Ca2+ transients facilitating AQP2 exposure at the apical plasma membrane, thus increasing collecting duct water permeability. Importantly, this effect suggests an unexplored application of RGZ in the treatment of pathological states characterized by impaired AQP2 trafficking at the plasma membrane

    AQP5 is expressed in type-B intercalated cells in the collecting duct system of the rat, mouse and human kidney.

    Get PDF
    We screened human kidney-derived multipotent CD133+/CD24+ ARPCs for the possible expression of all 13 aquaporin isoforms cloned in humans. Interestingly, we found that ARPCs expressed both AQP5 mRNA and mature protein. This novel finding prompted us to investigate the presence of AQP5 in situ in kidney. We report here the novel finding that AQP5 is expressed in human, rat and mouse kidney at the apical membrane of type-B intercalated cells. AQP5 is expressed in the renal cortex and completely absent from the medulla. Immunocytochemical analysis using segment- and cell type-specific markers unambiguously indicated that AQP5 is expressed throughout the collecting system at the apical membrane of type-B intercalated cells, where it co-localizes with pendrin. No basolateral AQPs were detected in type-B intercalated cells, suggesting that AQP5 is unlikely to be involved in the net trans-epithelial water reabsorption occurring in the distal tubule. An intriguing hypothesis is that AQP5 may serve an osmosensor for the composition of the fluid coming from the thick ascending limb. Future studies will unravel the physiological role of AQP5 in the kidney

    Calcium-Sensing Receptor and Aquaporin 2 Interplay in Hypercalciuria-Associated Renal Concentrating Defect in Humans. An In Vivo and In Vitro Study

    Get PDF
    One mechanism proposed for reducing the risk of calcium renal stones is activation of the calcium-sensing receptor (CaR) on the apical membranes of collecting duct principal cells by high luminal calcium. This would reduce the abundance of aquaporin-2 (AQP2) and in turn the rate of water reabsorption. While evidence in cells and in hypercalciuric animal models supports this hypothesis, the relevance of the interplay between the CaR and AQP2 in humans is not clear. This paper reports for the first time a detailed correlation between urinary AQP2 excretion under acute vasopressin action (DDAVP treatment) in hypercalciuric subjects and in parallel analyzes AQP2-CaR crosstalk in a mouse collecting duct cell line (MCD4) expressing endogenous and functional CaR. In normocalciurics, DDAVP administration resulted in a significant increase in AQP2 excretion paralleled by an increase in urinary osmolality indicating a physiological response to DDAVP. In contrast, in hypercalciurics, baseline AQP2 excretion was high and did not significantly increase after DDAVP. Moreover DDAVP treatment was accompanied by a less pronounced increase in urinary osmolality. These data indicate reduced urinary concentrating ability in response to vasopressin in hypercalciurics. Consistent with these results, biotinylation experiments in MCD4 cells revealed that membrane AQP2 expression in unstimulated cells exposed to CaR agonists was higher than in control cells and did not increase significantly in response to short term exposure to forskolin (FK). Interestingly, we found that CaR activation by specific agonists reduced the increase in cAMP and prevented any reduction in Rho activity in response to FK, two crucial pathways for AQP2 translocation. These data support the hypothesis that CaR–AQP2 interplay represents an internal renal defense to mitigate the effects of hypercalciuria on the risk of calcium precipitation during antidiuresis. This mechanism and possibly reduced medulla tonicity may explain the lower concentrating ability observed in hypercalciuric patients

    Urinary Excretion of Kidney Aquaporins as Possible Diagnostic Biomarker of Diabetic Nephropathy

    Get PDF
    Diabetic nephropathy (DN) is a microangiopathic complication of diabetes mellitus (DM) affecting one-third of diabetic patients. The large variability in the clinical presentation of renal involvement in patients with DM makes kidney biopsy a prerequisite for a correct diagnosis. However, renal biopsy is an invasive procedure associated with risk of major complications. Numerous studies aimed to identify a noninvasive biomarker of DN but, so far, none of these is considered to be sufficiently specific and sensitive. Water channel aquaporins (AQPs), expressed at the plasma membrane of epithelial tubular cells, are often dysregulated during DN. In this work, we analyzed the urine excretion of AQP5 and AQP2 (uAQP5 and uAQP2), via exosomes, in 35 diabetic patients: 12 normoalbuminuric with normal renal function (DM), 11 with proteinuric nondiabetic nephropathy (NDN), and 12 with histological diagnosis and classification of DN. ELISA and WB analysis independently showed that uAQP5 was significantly increased in DN patients. Interestingly, linear regression analysis showed a positive correlation between uAQP5 and the histological class of DN. The same analysis, focusing on uAQP2, showed comparable results. Taken together, these data suggest a possible use of AQP5 and AQP2 as novel noninvasive biomarkers to help in classifying the clinical stage of DN

    Phenolic characterization and antioxidant capacity of ten autochthonous vines grown in southern Italy / Caratterizzazione fenolica e potere antiossidante di dieci vitigni autoctoni allevati nel Sud Italia

    No full text
    In plant foods are naturally present some bioactive compounds, that are compounds having or not nutritional value and with biological activity that is expressed in reducing the risk of developing many chronic diseases, therefore leading a key protective effect on our health. Within this group of compounds the antioxidants are included. The importance of antioxidants contained in food is associated with their ability to exert in vivo, in the human body, beneficial effects against chronical- degenerative diseases induced by oxidative stress and age. It has been attributed a positive role to grape polyphenols in terms of increase in endogenous antioxidant defenses, thanks to regulation of genes coding for key enzymes of antioxidant system. For the polyphenols it has also been recognized a specific action of tumor growth inhibition, linked to the modulation of enzymes involved in carcinogenesis or to the inhibition of growth factors and cell proliferation activation. After carbohydrates and acids, the phenolic compounds represent the largest group among grape constituents. The synthesis of these secondary metabolites takes place in two distinct phases of vine growth cycle: fruit set and maturation. The polyphenolic composition contributes to grapes and wine sensory properties, such as color, flavor, astringency, and determines the antioxidant capacity of the extract. These metabolites are mainly related to the variety and their content is influenced by climatic and environmental factors. Among the polyphenols, anthocyanins, hydroxicinnamiltartaric acids, flavonols, flavans, stilbene and resveratrol are of particular interest. Despite numerous studies in the vine-wine industry on polyphenols quantification and qualification, we don't know much about the environmental conditions that affect their synthesis in grapes and how they are extracted from it in wine production. Therefore, the aim of this work has been the study of antioxidant property and phenolic profile of ten autochthonous vines grown in two different areas of South Italy. By spectrophotometric analysis it has been possible to analyze quali-quantitive characteristics of such substances, while by ORAC method (Oxygen Radical Absorbance Capacity) we have measured, in vitro, the antioxidant action. The oenological potential has been evaluated, in relation to polyphenols content, of ten Vitis Vinifera varieties belonging to autochthonous vines of Basilicata, grown in espalier and tent in two areas: in the vineyard of Val d'Agri (PZ), in Basilicata, and in South-East Bari area, in Rutigliano (Ba), in Puglia. The ten varieties belonging to Southern Italy autochthonous vines include four black grapes and six white grapes. Data obtained on total polyphenols content, view of the considerable variability encountered, allow us to affirm that the polyphenolic ripening of wine grapes, thus the reaching of the maximum level, is very influenced by the “terroir”, defined as the cultivation area or environment, by season trend, by cultivation techniques and by the different vines nutritional conditions. The same holds true for the antioxidant activity of the 10 wine grapes varieties of this study, since it is closely related to the polypheno

    AQP1-Containing Exosomes in Peritoneal Dialysis Effluent As Biomarker of Dialysis Efficiency

    No full text
    The water channel Aquaporin 1 (AQP1) plays a fundamental role in water ultrafiltration during peritoneal dialysis (PD) and its reduced expression or function may be responsible for ultrafiltration failure (UFF). In humans, AQP1 is expressed in the endothelium of the peritoneal capillaries but its expression in mesothelial cells (MC) and its functional role in PD is still being debated. Here, we studied a cohort of 30 patients using PD in order to determine the presence of AQP1 in peritoneal biopsies, AQP1 release in the PD effluent through exosomes and the correlation of AQP1 abundance with the efficiency of peritoneal ultrafiltration. The experiments using immunofluorescence showed a strong expression of AQP1 in MCs. Immunoblotting analysis on vesicles isolated from PD effluents showed a consistent presence of AQP1, mesothelin and Alix and the absence of the CD31. Thus, this suggests that they have an exclusive mesothelial origin. The immunoTEM analysis showed a homogeneous population of nanovesicles and confirmed the immunoblotting results. Interestingly, the quantitative analysis by ELISA showed a positive correlation between AQP1 in the PD effluent and ultrafiltration (UF), free water transport (FWT) and Na-sieving. This evidence opens the discussion on the functional role of mesothelial AQP1 during PD and suggests that it may represent a potential non-invasive biomarker of peritoneal barrier integrity, with predictive potential of UFF in PD patients
    corecore