9 research outputs found

    Enhanced IL-1β Release Following NLRP3 and AIM2 Inflammasome Stimulation Is Linked to mtROS in Airway Macrophages in Pulmonary Fibrosis.

    Get PDF
    Fibrotic Interstitial lung diseases (ILDs) are complex disorders of variable clinical behaviour. The majority of them cause significant morbidity, whilst Idiopathic Pulmonary Fibrosis (IPF) is recognised as the most relentless. NLRP3, AIM2, and NLRC4 inflammasomes are multiprotein complexes driving IL-1β release; a proinflammatory and profibrotic cytokine. Several pathogenetic factors associated with IPF are identified as inflammasome activators, including increases in mtROS and bacterial burden. Mitochondrial oxidation and alterations in bacterial burden in IPF and other ILDs may lead to augmented inflammasome activity in airway macrophages (AMs). IPF (n=14), non-IPF-ILDs (n=12) patients and healthy subjects (n=12) were prospectively recruited and AMs were isolated from bronchoalveolar lavage. IL-1β release resulting from NLRP3, AIM2 and NLRC4 inflammasomes stimulation in AMs were determined and baseline levels of mitochondrial ROS and microbial burden were also measured. Our results showed that NLRP3 was more inducible in IPF and other ILDs compared to controls. Additionally, following AIM2 activation IL-1β release was significantly higher in IPF compared to controls, whereas similar trends were observed in Non-IPF-ILDs. NLRC4 activation was similar across groups. mtROS was significantly associated with heightened NLRP3 and AIM2 activation, and mitochondrial antioxidant treatment limited inflammasome activation. Importantly, microbial burden was linked to baseline IL-1β release and AIM2 and IL-18 relative expression independently of mtROS. In conclusion, the above findings suggested a link between the overactivation of NLRP3 and AIM2 inflammasomes, driven by mitochondrial oxidation, in the pathogenesis of lung fibrosis while changes in the microbiota may prime the inflammasome in the lungs

    The synergetic modulation of the excitability of central gray matter by a neuropeptide: two protocols using excitation waves in chick retina

    Get PDF
    The isolated chick retina provides an in vitro tissue model, in which two protocols were developed to verify the efficacy of a peptide in the excitability control of the central gray matter. In the first, extra-cellular potassium homeostasis is challenged at long intervals and in the second, a wave is trapped in a ring of tissue causing the system to be under self-sustained challenge. Within the neuropil, the extra-cellular potassium transient observed in the first protocol was affected from the initial rising phase to the final concentration at the end of the five-minute pulse. There was no change in the concomitants of excitation waves elicited by the extra-cellular rise of potassium. However, there was an increase on the elicited waves latency and/or a rise in the threshold potassium concentration for these waves to appear. In the second protocol, the wave concomitants and the propagation velocity were affected by the peptide. The results suggest a synergetic action of the peptide on glial and synaptic membranes: by accelerating the glial Na/KATPase and changing the kinetics of the glial potassium channels, with glia tending to accumulate KCl. At the same time, there is an increase in potassium currents through nerve terminals.<br>Retinas de pinto isoladas proporcionam um modelo de tecidos in vitro, para o qual dois protocolos foram desenvolvidos para verificar a eficácia de um peptídeo no controle da excitabilidade da matéria cinzenta central. No primeiro, a homeostase do potássio extra-celular é desafiada por intervalos longos (1 hora) e no segundo, uma onda é capturada em um anel de tecido, de tal maneira que o sistema permaneça em estado de desafio auto-sustentado. Dentro da neuropil, o transiente de potássio extra-celular observado no primeiro protocolo foi afetado da fase de início de aumento à concentração final, ao final do pulso de cinco minutos. Não há mudanças nos parâmetros concomitantes das ondas de excitação geradas pelo aumento do potássio extra-celular. Entretanto, houve um aumento da latência das ondas geradas e/ou um aumento no nível de concentração de potássio necessário para gerar a onda. No segundo protocolo, os parâmetros concomitantes da onda e sua velocidade de propagação foram afetados pelo peptídeo. Os resultados sugerem uma ação sinergética do peptídeo nas membranas gliais e sinápticas: acelerando o Na/KATPase glial e mudando a cinética dos canais de potássio gliais, com a glia tendendo a acumular KCl. Nesse período, não há aumento nas correntes de potássio nas terminações nervosas

    Advances in Discovery of PDE10A Inhibitors for CNS-Related Disorders. Part 1: Overview of the Chemical and Biological Research

    No full text
    corecore