516 research outputs found

    Auditory, Visual, and Audiovisual Speech Intelligibility for Sentence-Length Stimuli: An Investigation of Conversational and Clear Speech

    Get PDF
    Previous investigators have shown that the use of clear speech improves the auditory speech intelligibility of talkers. In the present study, the differences in speech intelligibility for sentences spoken conversationally and in a clear manner were investigated under three different experimental conditions: Auditory-only, visual-only, and audiovisually. Six talkers were videotaped while saying a list of 17 sentences twice: first while using conversational speech and then while using clear speech. The recorded stimuli were randomized and presented to subjects under one of the three experimental conditions, A broadband noise was mixed with the audio signal for the auditory-only and the audiovisual conditions. An auditory, visual, and audiovisual speech intelligibility score was obtained for the tokens of conversational and clear speech spoken by individual talkers. Overall, in each experimental condition, speech intelligibility improved significantly for the tokens of clear speech. However, for the auditory-only and the visual-only conditions there was a significant interaction between talker and manner of speech. In those sensory modalities, the speech intelligibility of some talkers improved when they used clear speech. The results suggest that for an individual talker there is not a direct association in the amount of improvement provided by the use of clear speech across sensory modalities

    SSTR2 in Nasopharyngeal Carcinoma:Relationship with Latent EBV Infection and Potential as a Therapeutic Target

    Get PDF
    SIMPLE SUMMARY: Nasopharyngeal cancer (NPC) is a malignant epithelial tumor endemic to parts of Asia and associated with infection by the Epstein–Barr virus (EBV) in these regions. The cancer is often detected at a late stage which is associated with poor outcomes (63% 5-year survival). Advances for the management of this disease have remained largely stagnant and treatment relies primarily on radiotherapy and chemotherapy, as well as surgery when indicated. Nevertheless, our understanding of its underlying biology has grown rapidly in the past two decades, laying the foundation for the development of improved therapeutics which have the potential to improve outcomes. This review offers a comprehensive, up-to-date summary of this disease, with a focus on the role of somatostatin receptor 2 (SSTR2) in NPC and how this increased knowledge may lead to improved diagnosis and management of this disease. ABSTRACT: Nasopharyngeal carcinoma (NPC) is a malignant epithelial tumor, most commonly located in the pharyngeal recess and endemic to parts of Asia. It is often detected at a late stage which is associated with poor prognosis (5-year survival rate of 63%). Treatment for this malignancy relies predominantly on radiotherapy and/or systemic chemotherapy, which can be associated with significant morbidity and impaired quality of life. In endemic regions NPC is associated with infection by Epstein–Barr virus (EBV) which was shown to upregulate the somatostatin receptor 2 (SSTR2) cell surface receptor. With recent advances in molecular techniques allowing for an improved understanding of the molecular aetiology of this disease and its relation to SSTR2 expression, we provide a comprehensive and up-to-date overview of this disease and highlight the emergence of SSTR2 as a key tumor biomarker and promising target for imaging and therapy

    Outcomes of the first global multidisciplinary consensus meeting including persons living with obesity to standardize patient-reported outcome measurement in obesity treatment research

    No full text
    Quality of life is a key outcome that is not rigorously measured in obesity treatment research due to the lack of standardization of patient-reported outcomes (PROs) and PRO measures (PROMs). The S.Q.O.T. initiative was founded to Standardize Quality of life measurement in Obesity Treatment. A first face-to-face, international, multidisciplinary consensus meeting was conducted to identify the key PROs and preferred PROMs for obesity treatment research. It comprised of 35 people living with obesity (PLWO) and healthcare providers (HCPs). Formal presentations, nominal group techniques, and modified Delphi exercises were used to develop consensus-based recommendations. The following eight PROs were considered important: self-esteem, physical health/functioning, mental/psychological health, social health, eating, stigma, body image, and excess skin. Self-esteem was considered the most important PRO, particularly for PLWO, while physical health was perceived to be the most important among HCPs. For each PRO, one or more PROMs were selected, except for stigma. This consensus meeting was a first step toward standardizing PROs (what to measure) and PROMs (how to measure) in obesity treatment research. It provides an overview of the key PROs and a first selection of the PROMs that can be used to evaluate these PROs

    Somatostatin receptor 2 expression in nasopharyngeal cancer is induced by Epstein Barr virus infection: impact on prognosis, imaging and therapy

    No full text
    Nasopharyngeal cancer (NPC), endemic in Southeast Asia, lacks effective diagnostic and therapeutic strategies. Even in high-income countries the 5-year survival rate for stage IV NPC is less than 40%. Here we report high somatostatin receptor 2 (SSTR2) expression in multiple clinical cohorts comprising 402 primary, locally recurrent and metastatic NPCs. We show that SSTR2 expression is induced by the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) via the NF-kappa B pathway. Using cell-based and preclinical rodent models, we demonstrate the therapeutic potential of SSTR2 targeting using a cytotoxic drug conjugate, PEN-221, which is found to be superior to FDA-approved SSTR2-binding cytostatic agents. Furthermore, we reveal significant correlation of SSTR expression with increased rates of survival and report in vivo uptake of the SSTR2-binding Ga-68-DOTA-peptide radioconjugate in PET-CT scanning in a clinical trial of NPC patients (NCT03670342). These findings reveal a key role in EBV-associated NPC for SSTR2 in infection, imaging, targeted therapy and survival. Nasopharyngeal carcinoma (NPC) lacks effective diagnostic and therapeutic strategies, in particular at advanced stages. Here, the authors show that expression of the somatostatin receptor 2 is induced by Epstein-Barr virus in NPC and has a key role in the diagnosis, imaging, targeted therapies and prognosis of NPC

    Outcomes of the first global multidisciplinary consensus meeting including persons living with obesity to standardize patient-reported outcome measurement in obesity treatment research

    Get PDF
    Quality of life is a key outcome that is not rigorously measured in obesity treatment research due to the lack of standardization of patient-reported outcomes (PROs) and PRO measures (PROMs). The S.Q.O.T. initiative was founded to Standardize Quality of life measurement in Obesity Treatment. A first face-to-face, international, multidisciplinary consensus meeting was conducted to identify the key PROs and preferred PROMs for obesity treatment research. It comprised of 35 people living with obesity (PLWO) and healthcare providers (HCPs). Formal presentations, nominal group techniques, and modified Delphi exercises were used to develop consensus-based recommendations. The following eight PROs were considered important: self-esteem, physical health/functioning, mental/psychological health, social health, eating, stigma, body image, and excess skin. Self-esteem was considered the most important PRO, particularly for PLWO, while physical health was perceived to be the most important among HCPs. For each PRO, one or more PROMs were selected, except for stigma. This consensus meeting was a first step toward standardizing PROs (what to measure) and PROMs (how to measure) in obesity treatment research. It provides an overview of the key PROs and a first selection of the PROMs that can be used to evaluate these PROs

    Measurement of the Higgs boson inclusive and differential fiducial production cross sections in the diphoton decay channel with pp collisions at s \sqrt{s} = 13 TeV

    No full text
    The measurements of the inclusive and differential fiducial cross sections of the Higgs boson decaying to a pair of photons are presented. The analysis is performed using proton-proton collisions data recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 137 fb1^{−1}. The inclusive fiducial cross section is measured to be σfid=73.45.3+5.4(stat)2.2+2.4(syst) {\sigma}_{\textrm{fid}}={73.4}_{-5.3}^{+5.4}{\left(\textrm{stat}\right)}_{-2.2}^{+2.4}\left(\textrm{syst}\right) fb, in agreement with the standard model expectation of 75.4 ± 4.1 fb. The measurements are also performed in fiducial regions targeting different production modes and as function of several observables describing the diphoton system, the number of additional jets present in the event, and other kinematic observables. Two double differential measurements are performed. No significant deviations from the standard model expectations are observed.[graphic not available: see fulltext

    Azimuthal anisotropy of dijet events in PbPb collisions at sNN \sqrt{s_{\textrm{NN}}} = 5.02 TeV

    No full text
    AbstractThe path-length dependent parton energy loss within the dense partonic medium created in lead-lead collisions at a nucleon-nucleon center-of-mass energy of sNN \sqrt{s_{\textrm{NN}}} = 5.02 TeV is studied by determining the azimuthal anisotropies for dijets with high transverse momentum. The data were collected by the CMS experiment in 2018 and correspond to an integrated luminosity of 1.69 nb1^{−1}. For events containing back-to-back jets, correlations in relative azimuthal angle and pseudorapidity (η) between jets and hadrons, and between two hadrons, are constructed. The anisotropies are expressed as the Fourier expansion coefficients vn_{n}, n = 2–4 of these azimuthal distributions. The dijet vn_{n} values are extracted from long-range (1.5 < |∆η| < 2.5) components of these correlations, which suppresses the background contributions from jet fragmentation processes. Positive dijet v2_{2} values are observed which increase from central to more peripheral events, while the v3_{3} and v4_{4} values are consistent with zero within experimental uncertainties.[graphic not available: see fulltext

    Search for nonresonant pair production of highly energetic Higgs bosons decaying to bottom quarks

    No full text
    A search for nonresonant Higgs boson (H) pair production via gluon and vector boson (V) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138 fb1^{-1} collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted H pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the H self-coupling and the quartic VVHH couplings, κ2V{\kappa_{2\mathrm{V}}} , excluding κ2V={\kappa_{2\mathrm{V}}} = 0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.A search for nonresonant Higgs boson (HH) pair production via gluon and vector boson (VV) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138 fb1^{−1} collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted HH pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the HH self-coupling and the quartic VVHH couplings, κ2Vκ_{2V}, excluding κ2V=0κ_{2V} = 0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.A search for nonresonant Higgs boson (H) pair production via gluon and vector boson (V) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138  fb-1 collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted H pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the H self-coupling and the quartic VVHH couplings, κ2V, excluding κ2V=0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.A search for nonresonant Higgs boson (HH) pair production via gluon and vector boson (VV) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138 fb1^{−1} collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted HH pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the HH self-coupling and the quartic VVHH couplings, κ2Vκ_{2V}, excluding κ2V=0κ_{2V} = 0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.A search for nonresonant Higgs boson (H) pair production via gluon and vector boson (V) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138  fb-1 collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted H pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the H self-coupling and the quartic VVHH couplings, κ2V, excluding κ2V=0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.A search for nonresonant Higgs boson (HH) pair production via gluon and vector boson (VV) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138 fb1^{−1} collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted HH pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the HH self-coupling and the quartic VVHH couplings, κ2Vκ_{2V}, excluding κ2V=0κ_{2V} = 0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.A search for nonresonant Higgs boson (H) pair production via gluon and vector boson (V) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138  fb-1 collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted H pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the H self-coupling and the quartic VVHH couplings, κ2V, excluding κ2V=0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.A search for nonresonant Higgs boson (HH) pair production via gluon and vector boson (VV) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138 fb1^{−1} collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted HH pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the HH self-coupling and the quartic VVHH couplings, κ2Vκ_{2V}, excluding κ2V=0κ_{2V} = 0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.A search for nonresonant Higgs boson (H) pair production via gluon and vector boson (V) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138  fb-1 collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted H pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the H self-coupling and the quartic VVHH couplings, κ2V, excluding κ2V=0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.A search for nonresonant Higgs boson (HH) pair production via gluon and vector boson (VV) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138 fb1^{−1} collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted HH pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the HH self-coupling and the quartic VVHH couplings, κ2Vκ_{2V}, excluding κ2V=0κ_{2V} = 0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.A search for nonresonant Higgs boson (H) pair production via gluon and vector boson (V) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138  fb-1 collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted H pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the H self-coupling and the quartic VVHH couplings, κ2V, excluding κ2V=0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.A search for nonresonant Higgs boson (H) pair production via gluon and vector boson (V) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138 fb1^{-1} collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted H pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the H self-coupling and the quartic VVHH couplings, κ2V\kappa_{2V}, excluding κ2V\kappa_{2V} = 0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values

    Search for top squarks in the four-body decay mode with single lepton final states in proton-proton collisions at s= \sqrt{s}= 13 TeV

    No full text
    A search for the pair production of the lightest supersymmetric partner of the top quark, the top squark (t~1 \tilde{\mathrm{t}}_{1} ), is presented. The search targets the four-body decay of the t~1 \tilde{\mathrm{t}}_{1} , which is preferred when the mass difference between the top squark and the lightest supersymmetric particle is smaller than the mass of the W boson. This decay mode consists of a bottom quark, two other fermions, and the lightest neutralino (χ~10 \tilde{\chi}_{1}^{0} ), which is assumed to be the lightest supersymmetric particle. The data correspond to an integrated luminosity of 138 fb1 ^{-1} of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC. Events are selected using the presence of a high-momentum jet, an electron or muon with low transverse momentum, and a significant missing transverse momentum. The signal is selected based on a multivariate approach that is optimized for the difference between m(t~1) m(\tilde{\mathrm{t}}_{1}) and m(χ~10) m(\tilde{\chi}_{1}^{0}) . The contribution from leading background processes is estimated from data. No significant excess is observed above the expectation from standard model processes. The results of this search exclude top squarks at 95% confidence level for masses up to 480 and 700 GeV for m(t~1)m(χ~10)= m(\tilde{\mathrm{t}}_{1}) - m(\tilde{\chi}_{1}^{0}) = 10 and 80 GeV, respectively.A search for the pair production of the lightest supersymmetric partner of the top quark, the top squark (t1 {\overset{\sim }{\textrm{t}}}_1 ), is presented. The search targets the four-body decay of the t1 {\overset{\sim }{\textrm{t}}}_1 , which is preferred when the mass difference between the top squark and the lightest supersymmetric particle is smaller than the mass of the W boson. This decay mode consists of a bottom quark, two other fermions, and the lightest neutralino (χ10 {\overset{\sim }{\chi}}_1^0 ), which is assumed to be the lightest supersymmetric particle. The data correspond to an integrated luminosity of 138 fb1^{−1} of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC. Events are selected using the presence of a high-momentum jet, an electron or muon with low transverse momentum, and a significant missing transverse momentum. The signal is selected based on a multivariate approach that is optimized for the difference between m(t1 {\overset{\sim }{\textrm{t}}}_1 ) and m(χ10 {\overset{\sim }{\chi}}_1^0 ). The contribution from leading background processes is estimated from data. No significant excess is observed above the expectation from standard model processes. The results of this search exclude top squarks at 95% confidence level for masses up to 480 and 700 GeV for m(t1 {\overset{\sim }{\textrm{t}}}_1 ) − m(χ10 {\overset{\sim }{\chi}}_1^0 ) = 10 and 80 GeV, respectively.[graphic not available: see fulltext]A search for the pair production of the lightest supersymmetric partner of the top quark, the top squark (t~1\tilde{\mathrm{t}}_1), is presented. The search targets the four-body decay of the t~1\tilde{\mathrm{t}}_1, which is preferred when the mass difference between the top squark and the lightest supersymmetric particle is smaller than the mass of the W boson. This decay mode consists of a bottom quark, two other fermions, and the lightest neutralino (χ~10\tilde{\chi}^0_1), which is assumed to be the lightest supersymmetric particle. The data correspond to an integrated luminosity of 138 fb1^{-1} of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC. Events are selected using the presence of a high-momentum jet, an electron or muon with low transverse momentum, and a significant missing transverse momentum. The signal is selected based on a multivariate approach that is optimized for the difference between m(t~1)m(\tilde{\mathrm{t}}_1) and m(χ~10)m(\tilde{\chi}^0_1). The contribution from leading background processes is estimated from data. No significant excess is observed above the expectation from standard model processes. The results of this search exclude top squarks at 95% confidence level for masses up to 480 and 700 GeV for m(t~1)m(χ~10m(\tilde{\mathrm{t}}_1) - m(\tilde{\chi}^0_1) = 10 and 80 GeV, respectively
    corecore