183 research outputs found

    Familial multiple myeloma. Two more families

    Get PDF
    The authors report on two multiple myeloma sibling pairs. In the absence of a known disease-specific marker one can only speculate on an explanation: is it because of inherited errors or is it related to the same environmental exposure, or both? In this study HLA typing and metabolizing enzyme polymorphism studies have been carried out with the aim of finding inherited similarities in the siblings or characteristics that might differ from the average population. Sibling pair 1 shared an HLA haplotype. Sibling pair 2 shared only HLA-B51, DR4, DRw53, DQ3. Sibling 1/1 was GSTT1/GSTM1 null and GSTP1 Ile105Val; sibling 1/2 was a GSTT1/GSTM1 heterozygote and GSTP1 Ile105Val; sibling 2/1 and 2/2 were GSTT1 heterozygotes and shared GSTM1 null/GSTP1 Ile105Ile. The siblings had identical light chain or heavy chain secretion, or both. The similarities found in the inherited factors together with the same environmental exposure in the siblings' first 20 years of life imply that the development of the same disease cannot be a coincidence

    Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): a randomised, phase 3, open-label, multicentre study

    Get PDF
    Background Bortezomib with dexamethasone is a standard treatment option for relapsed or refractory multiple myeloma. Carfilzomib with dexamethasone has shown promising activity in patients in this disease setting. The aim of this study was to compare the combination of carfilzomib and dexamethasone with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma. Methods In this randomised, phase 3, open-label, multicentre study, patients with relapsed or refractory multiple myeloma who had one to three previous treatments were randomly assigned (1: 1) using a blocked randomisation scheme (block size of four) to receive carfilzomib with dexamethasone (carfilzomib group) or bortezomib with dexamethasone (bortezomib group). Randomisation was stratified by previous proteasome inhibitor therapy, previous lines of treatment, International Staging System stage, and planned route of bortezomib administration if randomly assigned to bortezomib with dexamethasone. Patients received treatment until progression with carfilzomib (20 mg/m(2) on days 1 and 2 of cycle 1; 56 mg/m(2) thereafter; 30 min intravenous infusion) and dexamethasone (20 mg oral or intravenous infusion) or bortezomib (1.3 mg/m(2); intravenous bolus or subcutaneous injection) and dexamethasone (20 mg oral or intravenous infusion). The primary endpoint was progression-free survival in the intention-to-treat population. All participants who received at least one dose of study drug were included in the safety analyses. The study is ongoing but not enrolling participants; results for the interim analysis of the primary endpoint are presented. Findings Between June 20, 2012, and June 30, 2014, 929 patients were randomly assigned (464 to the carfilzomib group; 465 to the bortezomib group). Median follow-up was 11.9 months (IQR 9.3-16.1) in the carfilzomib group and 11.1 months (8.2-14.3) in the bortezomib group. Median progression-free survival was 18.7 months (95% CI 15.6-not estimable) in the carfilzomib group versus 9.4 months (8.4-10.4) in the bortezomib group at a preplanned interim analysis (hazard ratio [HR] 0.53 [95% CI 0.44-0.65]; p<0.0001). On-study death due to adverse events occurred in 18 (4%) of 464 patients in the carfilzomib group and in 16 (3%) of 465 patients in the bortezomib group. Serious adverse events were reported in 224 (48%) of 463 patients in the carfilzomib group and in 162 (36%) of 456 patients in the bortezomib group. The most frequent grade 3 or higher adverse events were anaemia (67 [14%] of 463 patients in the carfilzomib group vs 45 [10%] of 456 patients in the bortezomib group), hypertension (41 [9%] vs 12 [3%]), thrombocytopenia (39 [8%] vs 43 [9%]), and pneumonia (32 [7%] vs 36 [8%]). Interpretation For patients with relapsed or refractory multiple myeloma, carfilzomib with dexamethasone could be considered in cases in which bortezomib with dexamethasone is a potential treatment option

    Paroxysmalis nocturnalis haemoglobinuriával szövődött várandósság ritka esete

    Get PDF
    Paroxysmal nocturnal hemoglobinuria is a rare hematological disease. It is associated with increased maternal and fetal complications to such an extent that pregnancy has been considered relatively contraindicated in woman with paroxysmal nocturnal haemoglobinuria. Recently, eculizumab, a monoclonal antibody, has been shown to decrease complications during pregnancies. The highest risk is thromboembolic complication and, therefore, anticoagulant is a standard therapy during pregnancy. In the presented case, a 29-year-old woman with a 5-year history of paroxysmal nocturnal haemoglobinuria had a pregnancy. It was her first pregnancy and was complicated by a sinus thrombosis at the 11th gestational week. After the introduction of eculizumab treatment, the remaining period of pregnancy and delivery were uncomplicated. There are only a few cases in the literature about pregnancy in woman with paroxysmal nocturnal hemoglobinuria who are treated with eculizumab. This monoclonal antibody seems to be safe and it likely prevents many of the complications otherwise observed. Orv. Hetil., 2016, 157(23), 916-918

    Arteriolar biomechanics in a rat polycystic ovary syndrome model - effects of parallel vitamin D3 treatment.

    Get PDF
    To clarify the effects of dihydrotestosterone (DHT)-induced polycystic ovary syndrome (PCOS) on arteriolar biomechanics in a rat model and the possible modulatory role of vitamin D3. METHODS AND RESULTS: The PCOS model was induced in female Wistar rats by ten-weeks DHT treatment. Arteriolar biomechanics was tested in arterioles by pressure arteriography in control as well as DHT- and DHT with vitamin D3-treated animals in contracted and passive conditions. Increased wall stress and distensibility as well as increased vascular lumen were detected after DHT treatment. Concomitant vitamin D3 treatment lowered the mechanical load of the arterioles and restored the vascular diameter. CONCLUSION: The hyperandrogenic state resulted in more rigid, less flexible arteriolar walls with increased vascular lumen compared with controls. DHT treatment caused eutrophic remodelling of gracilis arteriole. These prehypertensive alterations caused by chronic DHT treatment were mostly reversed by concomitant vitamin D3 administration

    Komplex molekuláris genetikai vizsgálati algoritmus myeloproliferativ neoplasiák diagnosztikájában

    Get PDF
    Introduction: Mutations in Janus kinase 2, calreticulin and thrombopoietin receptor genes have been identified in the genetic background of Philadelphia chromosome negative, "classic" myeloproliferative neoplasms. Aim: The aim of the authors was to identify driver mutations in a large myeloproliferative cohort of 949 patients. Method: A complex array of molecular techniques (qualitative and quantitative allele-specific polymerase chain reactions, fragment analyzes, high resolution melting and Sanger sequencing) was applied. Results: All 354 patients with polycythemia vera carried Janus kinase 2 mutations (V617F 98.6%, exon 12: 1.4%). In essential thrombocythemia (n = 468), the frequency of V617F was 61.3% (n = 287), that of calreticulin 25.2% (n = 118), and that of thrombopoietin receptor mutations 2.1% (n = 10), while 11.3% (n = 53) were triple-negative. Similar distribution was observed in primary myelofibrosis (n = 127): 58.3% (n = 74) V617F, 23.6% (n = 30) calreticulin, 6.3% (n = 8) thrombopoietin receptor mutation positive and 11.8% (n = 15) triple-negative. Conclusions: The recent discovery of calreticulin gene mutations led to definite molecular diagnostics in around 90% of clonal myeloproliferative cases. Orv. Hetil., 2014, 155(52), 2074-2081

    'Special K' and a loss of cell-to-cell adhesion in proximal tubule-derived epithelial cells: modulation of the adherens junction complex by ketamine

    Get PDF
    Ketamine, a mild hallucinogenic class C drug, is the fastest growing ‘party drug’ used by 16–24 year olds in the UK. As the recreational use of Ketamine increases we are beginning to see the signs of major renal and bladder complications. To date however, we know nothing of a role for Ketamine in modulating both structure and function of the human renal proximal tubule. In the current study we have used an established model cell line for human epithelial cells of the proximal tubule (HK2) to demonstrate that Ketamine evokes early changes in expression of proteins central to the adherens junction complex. Furthermore we use AFM single-cell force spectroscopy to assess if these changes functionally uncouple cells of the proximal tubule ahead of any overt loss in epithelial cell function. Our data suggests that Ketamine (24–48 hrs) produces gross changes in cell morphology and cytoskeletal architecture towards a fibrotic phenotype. These physical changes matched the concentration-dependent (0.1–1 mg/mL) cytotoxic effect of Ketamine and reflect a loss in expression of the key adherens junction proteins epithelial (E)- and neural (N)-cadherin and β-catenin. Down-regulation of protein expression does not involve the pro-fibrotic cytokine TGFβ, nor is it regulated by the usual increase in expression of Slug or Snail, the transcriptional regulators for E-cadherin. However, the loss in E-cadherin can be partially rescued pharmacologically by blocking p38 MAPK using SB203580. These data provide compelling evidence that Ketamine alters epithelial cell-to-cell adhesion and cell-coupling in the proximal kidney via a non-classical pro-fibrotic mechanism and the data provides the first indication that this illicit substance can have major implications on renal function. Understanding Ketamine-induced renal pathology may identify targets for future therapeutic intervention

    Carfilzomib-lenalidomide-dexamethasone vs lenalidomide-dexamethasone in relapsed multiple myeloma by previous treatment

    Get PDF
    Carfilzomib, a proteasome inhibitor, is approved as monotherapy and in combination with dexamethasone or lenalidomide-dexamethasone (Rd) for relapsed or refractory multiple myeloma. The approval of carfilzomib-lenalidomide-dexamethasone (KRd) was based on results from the randomized, phase 3 study ASPIRE (NCT01080391), which showed KRd significantly improved progression-free survival (PFS) vs Rd (median 26.3 vs 17.6 months; hazard ratio (HR)=0.690; P=0.0001). This subgroup analysis of ASPIRE evaluated KRd vs Rd by number of previous lines of therapy and previous exposure to bortezomib, thalidomide or lenalidomide. Treatment with KRd led to a 12-month improvement in median PFS vs Rd after first relapse (HR 0.713) and a 9-month improvement after 2 previous lines of therapy (HR 0.720). Treatment with KRd led to an approximate 8-month improvement vs Rd in median PFS in bortezomib-exposed patients (HR 0.699), a 15-month improvement in thalidomide-exposed patients (HR 0.587) and a 5-month improvement in lenalidomide-exposed patients (HR 0.796). Objective response and complete response or better rates were higher with KRd vs Rd, irrespective of previous treatment. KRd had a favorable benefit-risk profile and should be considered an appropriate treatment option for patients with 1 or 2 previous lines of therapy and those previously exposed to bortezomib, thalidomide or lenalidomide
    corecore