20 research outputs found

    AVALIAÇÃO DO VOLUME CORRENTE DE AR EM CÃES SUBMETIDOS A TORACOTOMIA EM BLOCO

    Full text link
    A freqüência respiratória e o volume corrente de ar foram medidos em cães submetidos a técnica de toracotomia em bloco. Os animais foram tranqüilizados com acetilpromazina e anestesiados com tiopental sódico, acompanhado de entubação endotraqueal e utilização de mini-respirador automático à pressão positiva intermitente. Os valores do volume-minuto, freqüência respiratória e volume corrente foram registrados nos seguintes tempos: antes da indução de anestesia (T0), no final da cirurgia (T1), 24 horas (T2) e 7 dias depois do término da cirurgia (T3), respectivamente. Nos animais do grupo II, no final da cirurgia (Tempo 1) e 24 horas após (Tempo 2), foi feita anestesia local infiltrativa dos nervos intercostais junto das costelas seccionadas para comparação das prováveis alterações da mecânica respiratória e do volume corrente de ar no período pós-operatório. A técnica da toracotomia em bloco não provocou alterações da mecânica respiratória durante o período pós-operatório

    The solar particle acceleration radiation and kinetics (SPARK) mission concept

    Get PDF
    Particle acceleration is a fundamental process arising in many astrophysical objects, including active galactic nuclei, black holes, neutron stars, gamma-ray bursts, accretion disks, solar and stellar coronae, and planetary magnetospheres. Its ubiquity means energetic particles permeate the Universe and influence the conditions for the emergence and continuation of life. In our solar system, the Sun is the most energetic particle accelerator, and its proximity makes it a unique laboratory in which to explore astrophysical particle acceleration. However, despite its importance, the physics underlying solar particle acceleration remain poorly understood. The SPARK mission will reveal new discoveries about particle acceleration through a uniquely powerful and complete combination of γ-ray, X-ray, and EUV imaging and spectroscopy at high spectral, spatial, and temporal resolutions. SPARK’s instruments will provide a step change in observational capability, enabling fundamental breakthroughs in our understanding of solar particle acceleration and the phenomena associated with it, such as the evolution of solar eruptive events. By providing essential diagnostics of the processes that drive the onset and evolution of solar flares and coronal mass ejections, SPARK will elucidate the underlying physics of space weather events that can damage satellites and power grids, disrupt telecommunications and GPS navigation, and endanger astronauts in space. The prediction of such events and the mitigation of their potential impacts are crucial in protecting our terrestrial and space-based infrastructure
    corecore