723 research outputs found

    Numerical evolution of matter in dynamical axisymmetric black hole spacetimes. I. Methods and tests

    Full text link
    We have developed a numerical code to study the evolution of self-gravitating matter in dynamic black hole axisymmetric spacetimes in general relativity. The matter fields are evolved with a high-resolution shock-capturing scheme that uses the characteristic information of the general relativistic hydrodynamic equations to build up a linearized Riemann solver. The spacetime is evolved with an axisymmetric ADM code designed to evolve a wormhole in full general relativity. We discuss the numerical and algorithmic issues related to the effective coupling of the hydrodynamical and spacetime pieces of the code, as well as the numerical methods and gauge conditions we use to evolve such spacetimes. The code has been put through a series of tests that verify that it functions correctly. Particularly, we develop and describe a new set of testbed calculations and techniques designed to handle dynamically sliced, self-gravitating matter flows on black holes, and subject the code to these tests. We make some studies of the spherical and axisymmetric accretion onto a dynamic black hole, the fully dynamical evolution of imploding shells of dust with a black hole, the evolution of matter in rotating spacetimes, the gravitational radiation induced by the presence of the matter fields and the behavior of apparent horizons through the evolution.Comment: 42 pages, 20 figures, submitted to Phys Rev

    Axion interpretation of the PVLAS data?

    Full text link
    The PVLAS collaboration has recently reported the observation of a rotation of the polarization plane of light propagating through a transverse static magnetic field. Such an effect can arise from the production of a light, m_A ~ meV, pseudoscalar coupled to two photons with coupling strength g_{A\gamma} ~ 5x10^{-6} GeV^{-1}. Here, we review these experimental findings, discuss how astrophysical and helioscope bounds on this coupling can be evaded, and emphasize some experimental proposals to test the scenario.Comment: 4 pages, 1 figure, jpconf.cls, talk presented at the ninth International Conference on Topics in Astroparticle and Underground Physics, TAUP 2005, Zaragoza, Spain, September 10-14, 200

    Evading the astrophysical limits on light pseudoscalars

    Full text link
    We study the possibility of evading astrophysical bounds on light pseudoscalars. We argue that the solar bounds can be evaded if we have a sufficiently strong self coupling of the pseudoscalars. The required couplings do not conflict with any known experimental bounds. We show that it is possible to find a coupling range such that the results of the recent PVLAS experiment are not in conflict with any astrophysical bounds.Comment: 10 pages, 5 figures, minor change

    Numerical evolution of matter in dynamical axisymmetric black hole spacetimes: I. Methods and tests

    Get PDF
    We have developed a numerical code to study the evolution of self-gravitating matter in dynamic black hole axisymmetric spacetimes in general relativity. The matter fields are evolved with a high-resolution shock-capturing scheme that uses the characteristic information of the general relativistic hydrodynamic equations to build up a linearized Riemann solver. The spacetime is evolved with an axisymmetric ADM code designed to evolve a wormhole in full general relativity. We discuss the numerical and algorithmic issues related to the effective coupling of the hydrodynamical and spacetime pieces of the code, as well as the numerical methods and gauge conditions we use to evolve such spacetimes. The code has been put through a series of tests that verify that it functions correctly. Particularly, we develop and describe a new set of testbed calculations and techniques designed to handle dynamically sliced, self-gravitating matter flows on black holes, and subject the code to these tests. We make some studies of the spherical and axisymmetric accretion onto a dynamic black hole, the fully dynamical evolution of imploding shells of dust with a black hole, the evolution of matter in rotating spacetimes, the gravitational radiation induced by the presence of the matter fields and the behavior of apparent horizons through the evolution

    Self Interacting Dark Matter in the Solar System

    Get PDF
    Weakly coupled, almost massless, spin 0 particles have been predicted by many extensions of the standard model of particle physics. Recently, the PVLAS group observed a rotation of polarization of electromagnetic waves in vacuum in the presence of transverse magnetic field. This phenomenon is best explained by the existence of a weakly coupled light pseudoscalar particle. However, the coupling required by this experiment is much larger than the conventional astrophysical limits. Here we consider a hypothetical self-interacting pseudoscalar particle which couples weakly with visible matter. Assuming that these pseudoscalars pervade the galaxy, we show that the solar limits on the pseudoscalar-photon coupling can be evaded.Comment: 17 pages, 2 figure
    • …
    corecore