38 research outputs found
Energies of the X- and L-valleys in In0.53Ga0.47As from electronic structure calculations
Several theoretical electronic structure methods are applied to study the relative energies of the minima of the X- and L-conduction-band satellite valleys of InxGa1−xAs with x = 0.53. This III-V semiconductor is a contender as a replacement for silicon in high-performance n-type metal-oxide-semiconductor transistors. The energy of the low-lying valleys relative to the conduction-band edge governs the population of channel carriers as the transistor is brought into inversion, hence determining current drive and switching properties at gate voltages above threshold. The calculations indicate that the position of the L- and X-valley minima are ∼1 eV and ∼1.2 eV, respectively, higher in energy with respect to the conduction-band minimum at the Γ-point
Theory of Interfacial Plasmon-Phonon Scattering in Supported Graphene
One of the factors limiting electron mobility in supported graphene is remote
phonon scattering. We formulate the theory of the coupling between graphene
plasmon and substrate surface polar phonon (SPP) modes, and find that it leads
to the formation of interfacial plasmon-phonon (IPP) modes, from which the
phenomena of dynamic anti-screening and screening of remote phonons emerge. The
remote phonon-limited mobilities for SiO, HfO, h-BN and
AlO substrates are computed using our theory. We find that h-BN
yields the highest peak mobility, but in the practically useful high-density
range the mobility in HfO-supported graphene is high, despite the fact
that HfO is a high- dielectric with low-frequency modes. Our
theory predicts that the strong temperature dependence of the total mobility
effectively vanishes at very high carrier concentrations. The effects of
polycrystallinity on IPP scattering are also discussed.Comment: 33 pages, 7 figure
Theory of hole mobility in strained Ge and III-V p-channel inversion layers with high-kappa insulators
We present a comprehensive investigation of the low-field hole mobility in strained Ge and III-V (GaAs, GaSb, InSb, and In(1-x)Ga(x)As) p-channel inversion layers with both SiO(2) and high-kappa insulators. The valence (sub) band structure of Ge and III-V channels, relaxed and under biaxial strain (tensile and compressive) is calculated using an efficient self-consistent method based on the six-band k.p perturbation theory. The hole mobility is then computed using the Kubo-Greenwood formalism accounting for nonpolar hole-phonon scattering (acoustic and optical), surface roughness scattering, polar phonon scattering (III-Vs only), alloy scattering (alloys only) and remote phonon scattering, accounting for multisubband dielectric screening. As expected, we find that Ge and III-V semiconductors exhibit a mobility significantly larger than the "universal" Si mobility. This is true for MOS systems with either SiO(2) or high-kappa insulators, although the latter ones are found to degrade the hole mobility compared to SiO(2) due to scattering with interfacial optical phonons. In addition, III-Vs are more sensitive to the interfacial optical phonons than Ge due to the existence of the substrate polar phonons. Strain-especially biaxial tensile stress for Ge and biaxial compressive stress for III-Vs (except for GaAs) - is found to have a significant beneficial effect with both SiO(2) and HfO(2). Among strained p-channels, InSb exhibits the largest mobility enhancement. In(0.7)Ga(0.3)As also exhibits an increased hole mobility compared to Si, although the enhancement is not as large. Finally, our theoretical results are favorably compared with available experimental data for a relaxed Ge p-channel with a HfO(2) insulator. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3524569