55 research outputs found

    Numerical study of the effects of hydrodynamic interactions among cells for microfluidic holographic cyto-tomography

    Get PDF
    When cells in a suspension flow through a microfluidic channel and rotate within the field of view (FOV) of a holographic microscope, they become accessible to a light beam from various angles. This allows the retrieval of a three-dimensional refractive index map for each flowing cell, essentially a 3D phase-contrast tomogram. Understanding the effects of hydrodynamic interactions among cells on their rotational behaviour during flow is crucial for designing microfluidic devices for holographic imaging. In this study, we employ direct numerical simulations to investigate the dynamics of cell clusters suspended in a Newtonian liquid under pressure-driven flow within a microfluidic channel, with the aim of clarifying the influence of hydrodynamic interactions on cell rotation

    Design Of An Optofluidic Device For The Measurement Of The Elastic Modulus Of Deformable Particles

    Get PDF
    Suspensions carrying deformable inclusions are ubiquitous in nature and applications. Hence, high-throughput characterization of the mechanical properties of soft particles is of great interest. Recently, a non-invasive optofluidic technique has been developed for the measurement of the interfacial tension between two immiscible liquids [8]. We have adapted such technique to the case of soft solid beads, thus designing a non-invasive optofluidic device for the measurement of the mechanical properties of deformable particles from real-time optical imaging of their deformation. The device consists of a cylindrical microfluidic channel with a cross-section reduction in which we make initially spherical soft beads flow suspended in a Newtonian carrier. By imaging the deformation of a particle in real time while it goes through the constriction, it is possible to get a measure of its elastic modulus through a theoretically derived-correlation. We provide both experimental and numerical validation of our device

    Numerical simulations of viscoelastic film stretching and retraction

    No full text
    Understanding how the deformation history affects the retraction dynamics of viscoelastic liquid films can provide a tool to design materials. In this paper, we investigate the stretching and retraction of circular viscoelastic liquid films through finite element numerical simulations. We consider a discoid domain made of a viscoelastic liquid. Its central hole is first ‘closed’ and then released, being left free to open under the effect of inertial, surface, viscous, and elastic forces. We perform a parametric study of film retraction, aiming at understanding the effects of the physical and operating parameters on it. In particular, we consider different viscoelastic constitutive equations, namely, Oldroyd-B, Giesekus (Gsk), and Phan Thien-Tanner (PTT) models, and different values of the film initial thickness. For each liquid and geometry, we investigate the effects of the film stretching rate and of liquid inertia, elasticity, and flow-dependent viscosity on the dynamics of the hole opening

    Numerical simulations of viscoelastic film stretching and retraction

    No full text
    \u3cp\u3eUnderstanding how the deformation history affects the retraction dynamics of viscoelastic liquid films can provide a tool to design materials. In this paper, we investigate the stretching and retraction of circular viscoelastic liquid films through finite element numerical simulations. We consider a discoid domain made of a viscoelastic liquid. Its central hole is first ‘closed’ and then released, being left free to open under the effect of inertial, surface, viscous, and elastic forces. We perform a parametric study of film retraction, aiming at understanding the effects of the physical and operating parameters on it. In particular, we consider different viscoelastic constitutive equations, namely, Oldroyd-B, Giesekus (Gsk), and Phan Thien-Tanner (PTT) models, and different values of the film initial thickness. For each liquid and geometry, we investigate the effects of the film stretching rate and of liquid inertia, elasticity, and flow-dependent viscosity on the dynamics of the hole opening.\u3c/p\u3
    • …
    corecore