7 research outputs found

    Biphenylsulfonacetic Acid Inhibitors of the Human Papillomavirus Type 6 E1 Helicase Inhibit ATP Hydrolysis by an Allosteric Mechanism Involving Tyrosine 486

    Get PDF
    Human papillomaviruses (HPVs) are the causative agents of benign and malignant lesions of the epithelium. Despite their high prevalence, there is currently no antiviral drug for the treatment of HPV-induced lesions. The ATPase and helicase activities of the highly conserved E1 protein of HPV are essential for viral DNA replication and pathogenesis and hence are considered valid antiviral targets. We recently described novel biphenylsulfonacetic acid inhibitors of the ATPase activity of E1 from HPV type 6 (HPV6). Based on kinetics and mutagenesis studies, we now report that these compounds act by an allosteric mechanism. They are hyperbolic competitive inhibitors of the ATPase activity of HPV6 E1 and also inhibit its helicase activity. Compounds in this series can also inhibit the ATPase activity of the closely related enzyme from HPV11; however, the most potent inhibitors of HPV6 E1 are significantly less active against the type 11 protein. We identified a single critical residue in HPV6 E1, Tyr-486, substituted by a cysteine in HPV11, which is primarily responsible for this difference in inhibitor potency. Interestingly, HPV18 E1, which also has a tyrosine at this position, could be inhibited by biphenylsulfonacetic acid derivatives, thereby raising the possibility that this class of inhibitors could be optimized as antiviral agents against multiple HPV types. These studies implicate Tyr-486 as a key residue for inhibitor binding and define an allosteric pocket on HPV E1 that can be exploited for future drug discovery efforts

    Inhibitors of Respiratory Syncytial Virus Replication Target Cotranscriptional mRNA Guanylylation by Viral RNA-Dependent RNA Polymerase

    Get PDF
    Respiratory syncytial virus (RSV) is a major cause of respiratory illness in infants, immunocompromised patients, and the elderly. New antiviral agents would be important tools in the treatment of acute RSV disease. RSV encodes its own RNA-dependent RNA polymerase that is responsible for the synthesis of both genomic RNA and subgenomic mRNAs. The viral polymerase also cotranscriptionally caps and polyadenylates the RSV mRNAs at their 5′ and 3′ ends, respectively. We have previously reported the discovery of the first nonnucleoside transcriptase inhibitor of RSV polymerase through high-throughput screening. Here we report the design of inhibitors that have improved potency both in vitro and in antiviral assays and that also exhibit activity in a mouse model of RSV infection. We have isolated virus with reduced susceptibility to this class of inhibitors. The mutations conferring resistance mapped to a novel motif within the RSV L gene, which encodes the catalytic subunit of RSV polymerase. This motif is distinct from the catalytic region of the L protein and bears some similarity to the nucleotide binding domain within nucleoside diphosphate kinases. These findings lead to the hypothesis that this class of inhibitors may block synthesis of RSV mRNAs by inhibiting guanylylation of viral transcripts. We show that short transcripts produced in the presence of inhibitor in vitro do not contain a 5′ cap but, instead, are triphosphorylated, confirming this hypothesis. These inhibitors constitute useful tools for elucidating the molecular mechanism of RSV capping and represent valid leads for the development of novel anti-RSV therapeutics

    In Vitro Resistance Profile of the Hepatitis C Virus NS3 Protease Inhibitor BI 201335

    No full text
    The in vitro resistance profile of BI 201335 was evaluated through selection and characterization of variants in genotype 1a (GT 1a) and genotype 1b (GT 1b) replicons. NS3 R155K and D168V were the most frequently observed resistant variants. Phenotypic characterization of the mutants revealed shifts in sensitivity specific to BI 201335 that did not alter susceptibility to alpha interferon. In contrast to macrocyclic and covalent protease inhibitors, changes at V36, T54, F43, and Q80 did not confer resistance to BI 201335
    corecore