15 research outputs found

    Study of CS, SiO, and SiS abundances in carbon star envelopes: Assessing their role as gas-phase precursors of dust

    Full text link
    Aim: We aim to determine the abundances of CS, SiO, and SiS in a large sample of carbon star envelopes covering a wide range of mass loss rates to investigate the potential role that these molecules could play in the formation of dust in the surroundings of the central AGB star. Methods: We surveyed a sample of 25 carbon-rich AGB stars in the λ\lambda 2 mm band, using the IRAM 30 m telescope. We performed excitation and radiative transfer calculations based on the LVG method to model the observed lines of the molecules and to derive their fractional abundances in the observed CSEs. Results: We detected CS in all 25 CSEs, SiO in 24 of them, and SiS in 17 sources. We found that CS and SiS have similar abundances in carbon star envelopes, while SiO is present with a lower abundance. We also found a strong correlation in which the denser the envelope, the less abundant are CS and SiO. The trend is however only tentatively seen for SiS in the range of high mass loss rates. Furthermore, we found a relation in which the integrated flux of the MgS dust feature at 30 um increases as the fractional abundance of CS decreases. Conclusions: The decline in the fractional abundance of CS with increasing density could be due to gas-phase chemistry in the inner envelope or to adsorption onto dust grains. The latter possibility is favored by a correlation between the CS fractional abundance and the 30 um feature, which suggests that CS is efficiently incorporated onto MgS dust around C-rich AGB stars. In the case of SiO, the observed abundance depletion with increasing density is most likely caused by an efficient incorporation onto dust grains. We conclude that CS, SiO (very likely), and SiS (tentatively) are good candidates to act as gas-phase precursors of dust in C-rich AGB envelopes.Comment: Accepted for publication in A&A, 19 pages, 11 figures, adbridged abstrac

    The abundance of S- and Si-bearing molecules in O-rich circumstellar envelopes of AGB stars

    Get PDF
    Aims: We aim to determine the abundances of SiO, CS, SiS, SO, and SO2_2 in a large sample of oxygen-rich AGB envelopes covering a wide range of mass loss rates to investigate the potential role that these molecules could play in the formation of dust in these environments. Methods:We surveyed a sample of 30 oxygen-rich AGB stars in the λ\lambda 2 mm band using the IRAM 30m telescope. We performed excitation and radiative transfer calculations based on the LVG method to model the observed lines of the molecules and to derive their fractional abundances in the observed envelopes. Results:We detected SiO in all 30 targeted envelopes, as well as CS, SiS, SO, and SO2_2 in 18, 13, 26, and 19 sources, respectively. Remarkably, SiS is not detected in any envelope with a mass loss rate below 10−610^{-6} M⊙_{\odot} yr−1^{-1}, whereas it is detected in all envelopes with mass loss rates above that threshold. From a comparison with a previous, similar study on C-rich sources, it becomes evident that the fractional abundances of CS and SiS show a marked differentiation between C-rich and O-rich sources, being two orders of magnitude and one order of magnitude more abundant in C-rich sources, respectively, while the fractional abundance of SiO turns out to be insensitive to the C/O ratio. The abundance of SiO in O-rich envelopes behaves similarly to C-rich sources, that is, the denser the envelope the lower its abundance. A similar trend, albeit less clear than for SiO, is observed for SO in O-rich sources. Conclusions: The marked dependence of CS and SiS abundances on the C/O ratio indicates that these two molecules form more efficiently in C- than O-rich envelopes. The decline in the abundance of SiO with increasing envelope density and the tentative one for SO indicate that SiO and possibly SO act as gas-phase precursors of dust in circumstellar envelopes around O-rich AGB stars.Comment: 22 pages, 3 figures, Accepted for publications in Astronomy & Astrophysic

    The Abundance of SiC2 in Carbon Star Envelopes: Evidence that SiC2 is a gas-phase precursor of SiC dust

    Full text link
    Silicon carbide dust is ubiquitous in circumstellar envelopes around C-rich AGB stars. However, the main gas-phase precursors leading to the formation of SiC dust have not yet been identified. The most obvious candidates among the molecules containing an Si--C bond detected in C-rich AGB stars are SiC2, SiC, and Si2C. We aim to study how widespread and abundant SiC2, SiC, and Si2C are in envelopes around C-rich AGB stars and whether or not these species play an active role as gas-phase precursors of silicon carbide dust in the ejecta of carbon stars. We carried out sensitive observations with the IRAM 30m telescope of a sample of 25 C-rich AGB stars to search for emission lines of SiC2, SiC, and Si2C in the 2 mm band. We performed non-LTE excitation and radiative transfer calculations based on the LVG method to model the observed lines of SiC2 and to derive SiC2 fractional abundances in the observed envelopes. We detect SiC2 in most of the sources, SiC in about half of them, and do not detect Si2C in any source, at the exception of IRC +10216. Most of these detections are reported for the first time in this work. We find a positive correlation between the SiC and SiC2 line emission, which suggests that both species are chemically linked, the SiC radical probably being the photodissociation product of SiC2 in the external layer of the envelope. We find a clear trend in which the denser the envelope, the less abundant SiC2 is. The observed trend is interpreted as an evidence of efficient incorporation of SiC2 onto dust grains, a process which is favored at high densities owing to the higher rate at which collisions between particles take place. The observed behavior of a decline in the SiC2 abundance with increasing density strongly suggests that SiC2 is an important gas-phase precursor of SiC dust in envelopes around carbon stars.Comment: Published in A&A. 16 pages and 10 figure

    Clues to NaCN formation

    Full text link
    ALMA is providing us essential information on where certain molecules form. Observing where these molecules emission arises from, the physical conditions of the gas, and how this relates with the presence of other species allows us to understand the formation of many species, and to significantly improve our knowledge of the chemistry that occurs in the space. We studied the molecular distribution of NaCN around IRC +10216, a molecule detected previously, but whose origin is not clear. High angular resolution maps allow us to model the abundance distribution of this molecule and check suggested formation paths. We modeled the emission of NaCN assuming local thermal equilibrium (LTE) conditions. These profiles were fitted to azimuthal averaged intensity profiles to obtain an abundance distribution of NaCN. We found that the presence of NaCN seems compatible with the presence of CN, probably as a result of the photodissociation of HCN, in the inner layers of the ejecta of IRC +10216. However, similar as for CH 3 CN, current photochemical models fail to reproduce this CN reservoir. We also found that the abundance peak of NaCN appears at a radius of 3 x 10 15 cm, approximately where the abundance of NaCl, suggested to be the parent species, starts to decay. However, the abundance ratio shows that the NaCl abundance is lower than that obtained for NaCN. We expect that the LTE assumption might result in NaCN abundances higher than the real ones. Updated photochemical models, collisional rates, and reaction rates are essential to determine the possible paths of the NaCN formation.Comment: 7 pages, 10 figures. Accepted for publication in A&A letter

    The first detection of SiC2_2 in the interstellar medium

    Full text link
    We report the first detection of SiC2_2 in the interstellar medium. The molecule was identified through six rotational transitions toward G\,+0.693−-0.027, a molecular cloud located in the Galactic center. The detection is based on a line survey carried out with the GBT, the Yebes 40m, and the IRAM 30m telescopes covering a range of frequencies from 12 to 276 GHz. We fit the observed spectra assuming local thermodynamic equilibrium and derive a column density of (1.02±0.04)×10131.02\pm0.04)\times10^{13} cm−2^{-2}, which gives a fractional abundance of 7.5×10−117.5\times10^{-11} with respect to H2_2, and an excitation temperature of 5.9±0.25.9\pm0.2 K. We conclude that SiC2_2 can be formed in the shocked gas by a reaction between the sputtered atomic silicon and C2_2H2_2, or it can be released directly from the dust grains due to disruption. We also search for other Si-bearing molecules and detect eight rotational transitions of SiS and four transitions of Si18^{18}O. The derived fractional abundances are 3.9×10−103.9\times10^{-10} and 2.1×10−112.1\times10^{-11}, respectively. All Si-bearing species toward G\,+0.693−-0.027 show fractional abundances well below what is typically found in late-type evolved stars.Comment: 8 pages, 5 figure

    Multi-frequency high spectral resolution observations of HCN toward the circumstellar envelope of Y CVn

    Full text link
    High spectral resolution observations toward the low mass-loss rate C-rich, J-type AGB star Y CVn have been carried out at 7.5, 13.1 and 14.0 um with SOFIA/EXES and IRTF/TEXES. Around 130 HCN and H13CN lines of bands v2, 2v2, 2v2-v2, 3v2-2v2, 3v2-v2, and 4v2-2v2 have been identified involving lower levels with energies up to ~3900 K. These lines have been complemented with the pure rotational lines J=1-0 and 3-2 of the vibrational states up to 2v2 acquired with the IRAM 30 m telescope, and with the continuum taken with ISO. We have analyzed the data with a ro-vibrational diagram and a code which models the absorption and emission of the circumstellar envelope of an AGB star. The continuum is produced by the star with a small contribution from dust grains comprising warm to hot SiC and cold amorphous carbon. The HCN abundance distribution seems to be anisotropic. The ejected gas is accelerated up to the terminal velocity (~8 km/s) from the photosphere to ~3R* but there is evidence of higher velocities (>9-10 km/s) beyond this region. In the vicinity of Y CVn, the line widths are as high as ~10 km/s, which implies a maximum turbulent velocity of 6 km/s or the existence of other physical mechanisms probably related to matter ejection that involve higher gas expansion velocities than expected. HCN is rotationally and vibrationally out of LTE throughout the whole envelope. A difference of about 1500 K in the rotational temperature at the photosphere is needed to explain the observations at 7.5 and 13-14 um. Our analysis finds a total HCN column density that ranges from ~2.1E+18 to 3.5E+18 cm^{-2}, an abundance with respect to H2 of 3.5E-05 to 1.3E-04, and a 12C/13C isotopic ratio of ~2.5 throughout the whole envelope.Comment: 24 pages, 11 figures, 3 tables, accepted for publication in A&

    Ionize Hard: Interstellar PO+ Detection

    Get PDF
    We report the first detection of the phosphorus monoxide ion (PO+) in the interstellar medium. Our unbiased and very sensitive spectral survey toward the G+0.693–0.027 molecular cloud covers four different rotational transitions of this molecule, two of which (J = 1–0 and J = 2–1) appear free of contamination from other species. The fit performed, assuming local thermodynamic equilibrium conditions, yields a column density of N=(6.0 \ub1 0.7) 7 1011\ua0cm−2. The resulting molecular abundance with respect to molecular hydrogen is 4.5 7 10–12. The column density of PO+ normalized by the cosmic abundance of P is larger than those of NO+ and SO+, normalized by N and S, by factors of 3.6 and 2.3, respectively. The N(PO+)/N(PO) ratio is 0.12 \ub1 0.03, more than one order of magnitude higher than that of N(SO+)/N(SO) and N(NO+)/N(NO). These results indicate that P is more efficiently ionized than N and S in the ISM. We have performed new chemical models that confirm that the PO+ abundance is strongly enhanced in shocked regions with high values of cosmic-ray ionization rates (10–15 − 10–14 s−1), as occurring in the G+0.693–0.027 molecular cloud. The shocks sputter the interstellar icy grain mantles, releasing into the gas phase most of their P content, mainly in the form of PH3, which is converted into atomic P, and then ionized efficiently by cosmic rays, forming P+. Further reactions with O2 and OH produces PO+. The cosmic-ray ionization of PO might also contribute significantly, which would explain the high N(PO+)/N(PO) ratio observed. The relatively high gas-phase abundance of PO+ with respect to other P-bearing species stresses the relevance of this species in the interstellar chemistry of P

    Abundance Estimates in Carbon Star Envelopes

    No full text
    2 pags., 1 fig. -- Why Galaxies Care About AGB Stars: A Continuing Challenge through Cosmic Time Proceedings IAU Symposium No. 343, 2019The synthesis of dust grains mostly takes place in the circumstellar envelopes (CSEs) of asymptotic giant branch (AGB) stars. What are the precursor seeds of condensation nuclei and how do these particles evolve toward the micrometer sized grains that populate the interstellar medium? These are key questions of the NANOCOSMOS project. In this study, we carried out an observational study to constrain what the main gas-phase precursors of dust in C-rich AGB stars are

    The abundance of SiC2 in carbon star envelopes

    No full text
    Poster presented at the Symposia Astrochemistry VII - Through the Cosmos from Galaxies to Planets, held in Puerto Varas (Chile) on march 20-24th, 2017

    Clues to NaCN formation

    No full text
    [Context] ALMA is providing us essential information on where certain molecules form. Observing where these molecules emission arises from, the physical conditions of the gas, and how this relates with the presence of other species allows us to understand the formation of many species, and to significantly improve our knowledge of the chemistry that occurs in the space.[Aims] We studied the molecular distribution of NaCN around IRC +10216, a molecule detected previously, but whose origin is not clear. High angular resolution maps allow us to model the abundance distribution of this molecule and check suggested formation paths.[Methods] We modeled the emission of NaCN assuming local thermal equilibrium (LTE) conditions. These profiles were fitted to azimuthal averaged intensity profiles to obtain an abundance distribution of NaCN.[Results] We found that the presence of NaCN seems compatible with the presence of CN, probably as a result of the photodissociation of HCN, in the inner layers of the ejecta of IRC +10216. However, similar as for CHCN, current photochemical models fail to reproduce this CN reservoir. We also found that the abundance peak of NaCN appears at a radius of 3 × 10 cm, approximately where the abundance of NaCl, suggested to be the parent species, starts to decay. However, the abundance ratio shows that the NaCl abundance is lower than that obtained for NaCN. We expect that the LTE assumption might result in NaCN abundances higher than the real ones. Updated photochemical models, collisional rates, and reaction rates are essential to determine the possible paths of the NaCN formation.The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement No. 610256 (NANOCOSMOS). We would also like to thank the Spanish MINECO for funding support from grants CSD2009-00038, AYA2012-32032 & AYA2016-75066-C2-1-P. M.A. also ackowledges funding support from the Ramón y Cajal programme of Spanish MINECO (RyC-2014-16277)
    corecore