723 research outputs found

    Comparison between BNP values measured in capillary blood samples with a POCT method and those measured in plasma venous samples with an automated platform

    Get PDF
    Letter to the Editor. Our data suggest that it is possible to measure BNP in fresh finger-stick samples of capillary whole blood with an acceptable reproducibility, and within 10 ā€“ 20 min to obtain results close correlated to those measured by the automated platform in plasma blood samples collected from a vein. The measurement of BNP in fresh finger-stick samples of capillary whole blood with this POCT method is in particular indicated for the management of HF patients at home and for the BNP assay in neonates and children

    An all-in-one dual band blade antenna for ads-b and 5g communications in uav assisted wireless networks

    Get PDF
    This paper is aimed at the characterization and manufacturing of an SMA coaxial fed com-pact blade antenna with dual frequency characteristics for broadband applications on board of Unmanned Air Vehicles (UAVs). This antenna is linearly polarized, and it combines the benefits of Automatic Dependent Surveillance-Broadcast (ADS-B) and 5th Generation (5G) communications in one single element, covering both the 1.030ā€“1.090 GHz and the 3.4ā€“3.8 GHz bands thanks to a bent side and a ā€˜Cā€™ shaped slot within the radiation element. Starting from the simulation outcomes on an ideal ground plane, the results are here extended to a bent ground plane and on two UAV com-mercial CAD models. Details of manufacturing of the antenna in both aluminium and FR-4 substrate materials are presented. The comparison between measurements and simulations is discussed in terms of return loss, bandwidth, gain, and radiation pattern. Results show an antenna with a low profile and a simple structure that can be employed in various wideband communication systems, suiting future UAV assisted 5G networks while being perfectly compliant with forthcoming ADS-B based Detect-And-Avoid (DAA) technologies in Unmanned Aerial Traffic Management (UTM)

    A perturbed MicroRNA expression pattern characterizes embryonic neural stem cells derived from a severe mouse model of spinal muscular atrophy (SMA)

    Get PDF
    Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder and the leading genetic cause of death in infants. Despite the disease-causing gene, survival motor neuron (SMN1), encodes a ubiquitous protein, SMN1 deficiency preferentially affects spinal motor neurons (MNs), leaving the basis of this selective cell damage still unexplained. As neural stem cells (NSCs) are multipotent self-renewing cells that can differentiate into neurons, they represent an in vitro model for elucidating the pathogenetic mechanism of neurodegenerative diseases such as SMA. Here we characterize for the first time neural stem cells (NSCs) derived from embryonic spinal cords of a severe SMNĪ”7 SMA mouse model. SMNĪ”7 NSCs behave as their wild type (WT) counterparts, when we consider neurosphere formation ability and the expression levels of specific regional and self-renewal markers. However, they show a perturbed cell cycle phase distribution and an increased proliferation rate compared to wild type cells. Moreover, SMNĪ”7 NSCs are characterized by the differential expression of a limited number of miRNAs, among which miR-335-5p and miR-100-5p, reduced in SMNĪ”7 NSCs compared to WT cells. We suggest that such miRNAs may be related to the proliferation differences characterizing SMNĪ”7 NSCs, and may be potentially involved in the molecular mechanisms of SMA

    Dendrimer-coated carbon nanotubes deliver dsRNA and increase the efficacy of gene knockdown in the red flour beetle Tribolium castaneum

    Get PDF
    Thanks to Dr Alan S. Bowman at the Institute for Biological and Environmental Sciences, University of Aberdeen for providing facilities and laboratory equipment for insect work and to Kevin S. Mackenzie and staff at the Microscopy and Histology Core Facility at the University of Aberdeen for TEM preparations. Scottish Crucible Project Award 2014 provided financial support for this research. CHE was supported by a Knowledge Transfer Network BBSRC Industrial Case (BB/L502467/1) studentship. CRC was supported by a KTN BBSRC CASE studentship (BB/M503526/1). AM and AC were supported by the Italian Ministry of Health (RF-PE-2011-02347026). EMC was supported by European Unionā€™s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 613960 (SMARTBEES) and Veterinary Medicines Directorate, Department for Environment Food & Rural Affairs (Project # VM0517).Peer reviewedPublisher PD
    • ā€¦
    corecore