25,556 research outputs found

    The role of interplanetary scattering in western hemisphere large solar energetic particle events

    Get PDF
    Using high-sensitivity instruments on the ACE spacecraft, we have examined the intensities of O and Fe in 14 large solar energetic particle events whose parent activity was in the solar western hemisphere. Sampling the intensities at low (~273 keV nucleon to the -1) and high (~12 MeV nucleon to the -1) energies, we find that at the same kinetic energy per nucleon, the Fe/O ratio decreases with time, as has been reported previously. This behavior is seen in more than 70% of the cases during the rise to maximum intensity and continues in most cases into the decay phase. We find that for most events if we compare the Fe intensity with the O intensity at a higher kinetic energy per nucleon, the two time-intensity profiles are strikingly similar. Examining alternate scenarios that could produce this behavior, we conclude that for events showing this behavior the most likely explanation is that the Fe and O share similar injection profiles near the Sun, and that scattering in the interplanetary medium dominates the profiles observed at 1 AU

    The mixing of interplanetary magnetic field lines: A significant transport effect in studies of the energy spectra of impulsive flares

    Get PDF
    Using instrumentation on board the ACE spacecraft we describe short-time scale (~3 hour) variations observed in the arrival profiles of ~20 keV nucleon^(–1) to ~2 MeV nucleon^(–1) ions from impulsive solar flares. These variations occurred simultaneously across all energies and were generally not in coincidence with any local magnetic field or plasma signature. These features appear to be caused by the convection of magnetic flux tubes past the observer that are alternately filled and devoid of flare ions even though they had a common flare source at the Sun. In these particle events we therefore have a means to observe and measure the mixing of the interplanetary magnetic field due to random walk. In a survey of 25 impulsive flares observed at ACE between 1997 November and 1999 July these features had an average time scale of 3.2 hours, corresponding to a length of ~0.03 AU. The changing magnetic connection to the flare site sometimes lead to an incomplete observation of a flare at 1 AU; thus the field-line mixing is an important effect in studies of impulsive flare energy spectra

    STEREO and ACE Observations of Energetic Particles from Corotating Interaction Regions

    Get PDF
    Since early 2007, significant particle enhancements due to corotating interaction regions (CIRs) have regularly appeared at 1 AU without any appreciable contamination from solar energetic particles (SEPs). In 2009 the prevalence of CIRs diminished as the maximum speed of the high speed solar wind streams in the ecliptic decreased along with the tilt of the heliospheric current sheet. Observations of CIR time profiles at different longitudes from STEREO show delays between the Behind and Ahead spacecraft that are often roughly as expected from the corotation time lag, although small differences in the spacecraft latitudes introduce significant scatter in the time delays. In some cases different features seen at Ahead and Behind suggest that transient disturbances in the solar wind may alter connection to or transport from the shock, or that temporal changes occur in the CIR shock itself. H and He data from STEREO/LET at 1.8–6 MeV/nucleon show that 1) the CIR spectral index at these energies is ~−4, independent of intensity but with considerable variability, 2) the He/H ratio is ~0.03 for larger CIRs but varies systematically with energy and event intensity, and 3) although the correlation between the CIR MeV particle increases and solar wind speed is generally good, many times a high-speed stream is not associated with MeV particles, while at other times a recurring series of CIR particle increases appears only at higher energies and may be associated with current sheet crossings and low speed solar wind

    Solar Energetic Particle Spectral Breaks

    Get PDF
    The five large solar particle events during October–November 2003 presented an opportunity to test shock acceleration models with in-situ observations. We use solar particle spectra of H to Fe ions, measured by instruments on ACE, SAMPEX, and GOES-11, to investigate the Q/M-dependence of spectral breaks in the 28 October 2003 event. We find that the break energies scale as (Q/M)^b with b ≈ 1.56 to 1.75, somewhat less than predicted. We also conclude that SEP spectra >100 MeV/nucleon are best fit by a double power-law shape. ©2005 American Institute of Physic

    Measurement of Newtonian fluid slip using a torsional ultrasonic oscillator

    Full text link
    The composite torsional ultrasonic oscillator, a versatile experimental system, can be used to investigate slip of Newtonian fluid at a smooth surface. A rigorous analysis of slip-dependent damping for the oscillator is presented. Initially, the phenomenon of finite surface slip and the slip length are considered for a half-space of Newtonian fluid in contact with a smooth, oscillating solid surface. Definitions are revisited and clarified in light of inconsistencies in the literature. We point out that, in general oscillating flows, Navier's slip length b is a complex number. An intuitive velocity discontinuity parameter of unrestricted phase is used to describe the effect of slip on measurement of viscous shear damping. The analysis is applied to the composite oscillator and preliminary experimental work for a 40 kHz oscillator is presented. The Non-Slip Boundary Condition (NSBC) has been verified for a hydrophobic surface in water to within ~60 nm of |b|=0 nm. Experiments were carried out at shear rate amplitudes between 230 and 6800 /s, corresponding to linear displacement amplitudes between 3.2 and 96 nm.Comment: Revised with minor edits for revie

    Seed populations for large solar particle events of cycle 23

    Get PDF
    Using high-resolution mass spectrometers on board the Advanced Composition Explorer (ACE), we surveyed the event-averaged ~0.1-60 MeV/nuc heavy ion elemental composition in 64 large solar energetic particle (LSEP) events of cycle 23. Our results show the following: (1) The rare isotope ^3He is greatly enhanced over the corona or the solar wind values in 46% of the events. (2) The Fe/O ratio decreases with increasing energy up to ~10 MeV/nuc in ~92% of the events and up to ~60 MeV/nuc in ~64% of the events. (3) Heavy ion abundances from C-Fe exhibit systematic M/g-dependent enhancements that are remarkably similar to those seen in ^3He-rich SEP events and CME-driven interplanetary (IP) shock events. Taken together, these results confirm the role of shocks in energizing particles up to ~60 MeV/nuc in the majority of large SEP events of cycle 23, but also show that the seed population is not dominated by ions originating from the ambient corona or the thermal solar wind, as previously believed. Rather, it appears that the source material for CME-associated large SEP events originates predominantly from a suprathermal population with a heavy ion enrichment pattern that is organized according to the ion's mass-per-charge ratio. These new results indicate that current LSEP models must include the routine production of this dynamic suprathermal seed population as a critical pre-cursor to the CME shock acceleration process

    Sediment Sorting and Rounding in a Basaltic Glacio-Fluvio-Aeolian Environment: hrisjkull Glacier, Iceland

    Get PDF
    Sediments and sedimentary rocks preserve a rich history of environment and climate. Identifying these signals requires an understanding of the physical and chemical processes that have affected sedimentary deposits [1]. Such processes include sorting and rounding during transport and chemical alteration through weathering and diagenesis. Although these processes have long been studied in quartz-dominated sedimentary systems [2], a lack of studies of basaltic sedimentary systems limits our interpretations of the environment and climate where mafic source rocks dominate, such as on Mars [3,4]. As part of the SAND-E: Semi-Autonomous Navigation for Detrital Environments project [5], which uses robotic operations to examine physical and chemical changes to sediments in basaltic glacio-fluvialaeolian environments, this research studies changes in sorting and rounding of fluvial-aeolian sediments along a glacier-proximal-to-glacier-distal transect in the outwash-plain of the risjkull glacier in SW Iceland (Fig. 1

    Extended Molecular Gas in the Nearby Starburst Galaxy Maffei 2

    Full text link
    We present a 9'x9' fully-sampled map of the CO J=1-0 emission in the nearby starburst galaxy Maffei 2 obtained at the Five College Radio Astronomy Observatory. The map reveals previously known strong CO emission in the central starburst region as well as an extended asymmetric distribution with bright CO lines at the ends of the bar and in a feature at the north-east edge of the molecular disk. This northern feature, proposed previously to be an interacting companion galaxy, could be a dwarf irregular galaxy, although the CO data are also consistent with the feature being simply an extension of one of the spiral arms. We estimate the total molecular gas mass of Maffei 2 to be (1.4-1.7)x10^9 Mo or ~3-4% of its dynamical mass. Adopting the recently determined lower value for the CO-to-H2 conversion factor in the central region, our data lead to the surprising result that the largest concentrations of molecular gas in Maffei 2 lie at the bar ends and in the putative dwarf companion rather than in the central starburst. A gravitational stability analysis reveals that the extended disk of Maffei 2 lies above the critical density for star formation; however, whether the central region is also gravitationally unstable depends both on the details of the rotation curve and the precise value of the CO-to-H2 conversion factor in this region.Comment: accepted to ApJ (Sept 10 2004 issue
    • …
    corecore