27,176 research outputs found

    Quantum fluctuations in the spiral phase of the Hubbard model

    Full text link
    We study the magnetic excitations in the spiral phase of the two--dimensional Hubbard model using a functional integral method. Spin waves are strongly renormalized and a line of near--zeros is observed in the spectrum around the spiral pitch ±Q\pm{\bf Q}. The possibility of disordered spiral states is examined by studying the one--loop corrections to the spiral order parameter. We also show that the spiral phase presents an intrinsic instability towards an inhomogeneous state (phase separation, CDW, ...) at weak doping. Though phase separation is suppressed by weak long--range Coulomb interactions, the CDW instability only disappears for sufficiently strong Coulomb interaction.Comment: Figures are NOW appended via uuencoded postscript fil

    Spacelab simulation using a Lear Jet aircraft: Mission no. 4 (ASSESS program)

    Get PDF
    The fourth ASSESS Spacelab simulation mission utilizing a Lear Jet aircraft featured trained experiment operators (EOs) in place of the participating scientists, to simulate the role and functions of payload specialists in Spacelab who may conduct experiments developed by other scientists. The experiment was a broadband infrared photometer coupled to a 30-cm, open port, IR telescope. No compromises in equipment design or target selection were made to simplify operator tasks; the science goals of the mission were selected to advance the mainline research program of the principle investigator (PI). Training of the EOs was the responsibility of the PI team and consisted of laboratory sessions, on-site training during experiment integration, and integrated mission training using the aircraft as a high-fidelity simulator. The EO permission experience in these several disciplines proved adequate for normal experiment operations, but marginal for the identification and remedy of equipment malfunctions. During the mission, the PI utilized a TV communication system to assist the EOs to overcome equipment difficulties; both science and operations were successfully implemented

    Shuttle spacelab simulation using a Lear jet aircraft: Mission no. 3 (ASSESS program)

    Get PDF
    The third ASSESS mission using a Lear Jet aircraft conducted to continue the study of scientific experiment operations in a simulated Spacelab environment. Prior to the mission, research planning and equipment preparation were observed and documented. A flight readiness review for the experiment was conducted. Nine of the ten scheduled flights were completed during simulation mission and all major science objectives were accomplished. The equipment was well qualified for flight and gave little trouble; telescope malfunctions occurred early in the mission and were corrected. Both real-time and post-observation data evaluation were used to assess research progress and to plan subsequent flight observations for maximum effectiveness

    Propfan test assessment testbed aircraft stability and control/performance 1/9-scale wind tunnel tests

    Get PDF
    One-ninth scale wind tunnel model tests of the Propfan Test Assessment (PTA) aircraft were performed in three different NASA facilities. Wing and propfan nacelle static pressures, model forces and moments, and flow field at the propfan plane were measured in these tests. Tests started in June 1985 and were completed in January 1987. These data were needed to assure PTA safety of flight, predict PTA performance, and validate analytical codes that will be used to predict flow fields in which the propfan will operate

    Pressure and force data for a flat wing and a warped conical wing having a shockless recompression at Mach 1.62

    Get PDF
    A conical nonlinear flow computer code was used to design a warped (cambered) wing which would produce a supercritical expansion and shockless recompression of the crossflow at a lift coefficient of 0.457, an angle of attack of 10 deg, and a Mach number of 1.62. This cambered wing and a flat wing the same thickness distribution were tested over a range of Mach numbers from 1.6 to 2.0. For both models the forward 60 percent is purely conical geometry. Results obtained with the cambered wing demonstrated the design features of a supercritical expansion and a shockless recompression, whereas results obtained with the flat wing indicated the presence of crossflow shocks. Tables of experimental pressure, force, and moment data are included, as well as selected oil flow photographs

    The Fe XXII I(11.92 A)/I(11.77 A) Density Diagnostic Applied to the Chandra High Energy Transmission Grating Spectrum of EX Hydrae

    Full text link
    Using the Livermore X-ray Spectral Synthesizer, which calculates spectral models of highly charged ions based primarily on HULLAC atomic data, we investigate the temperature, density, and photoexcitation dependence of the I(11.92 A)/I(11.77 A) line ratio of Fe XXII. We find that this line ratio has a critical density n_c \approx 5x10^13 cm^-3, is approximately 0.3 at low densities and 1.5 at high densities, and is very insensitive to temperature and photoexcitation, so is a useful density diagnostic for sources like magnetic cataclysmic variables in which the plasma densities are high and the efficacy of the He-like ion density diagnostic is compromised by the presence of a bright ultraviolet continuum. Applying this diagnostic to the Chandra High Energy Transmission Grating spectrum of the intermediate polar EX Hya, we find that the electron density of its T_e \approx 12 MK plasma is n_e = 1.0^{+2.0}_{-0.5} x 10^14 cm^-3, orders of magnitude greater than that typically observed in the Sun or other late-type stars.Comment: 11 pages including 3 encapsulated postscript figures; LaTeX format, uses aastex.cls; accepted on 2003 April 3 for publication in The Astrophysical Journa
    corecore