140 research outputs found

    Dual-side and three-dimensional microelectrode arrays fabricated from ultra-thin silicon substrates

    Get PDF
    A method for fabricating planar implantable microelectrode arrays was demonstrated using a process that relied on ultra-thin silicon substrates, which ranged in thickness from 25 to 50 µm. The challenge of handling these fragile materials was met via a temporary substrate support mechanism. In order to compensate for putative electrical shielding of extracellular neuronal fields, separately addressable electrode arrays were defined on each side of the silicon device. Deep reactive ion etching was employed to create sharp implantable shafts with lengths of up to 5 mm. The devices were flip-chip bonded onto printed circuit boards (PCBs) by means of an anisotropic conductive adhesive film. This scalable assembly technique enabled three-dimensional (3D) integration through formation of stacks of multiple silicon and PCB layers. Simulations and measurements of microelectrode noise appear to suggest that low impedance surfaces, which could be formed by electrodeposition of gold or other materials, are required to ensure an optimal signal-to-noise ratio as well a low level of interchannel crosstalk

    Efficient parametric amplification in high and very high frequency piezoelectric nanoelectromechanical systems

    Get PDF
    Parametric amplification in nanomechanical structures is demonstrated by modulating a purely intrinsic mechanical parameter of the system—the stress—via piezoelectric electromechanical coupling. Large resonance amplitude and quality factor enhancement due to parametric pumping are observed under both vacuum and ambient pressure conditions. Exploration of the region of parametric instability yields results that agree with parametric amplification theory

    Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications.

    Get PDF
    Optimal optogenetic perturbation of brain circuit activity often requires light delivery in a precise spatial pattern that cannot be achieved with conventional optical fibers. We demonstrate an implantable silicon-based probe with a compact light delivery system, consisting of silicon nitride waveguides and grating couplers for out-of-plane light emission with high spatial resolution. 473 nm light is coupled into and guided in cm-long waveguide and emitted at the output grating coupler. Using the direct cut-back and out-scattering measurement techniques, the propagation optical loss of the waveguide is measured to be below 3 dB/cm. The grating couplers provide collimated light emission with sufficient irradiance for neural stimulation. Finally, a probe with multisite light delivery with three output grating emitters from a single laser input is demonstrated

    Piezoelectric and Magnetoelastic Strain in the Transduction and Frequency Control of Nanomechanical Resonators

    Get PDF
    Stress and strain play a central role in semiconductors, and are strongly manifested at the nanometer-scale regime. Piezoelectricity and magnetostriction produce internal strains that are anisotropic and addressable via a remote electric or magnetic field. These properties could greatly benefit the nascent field of nanoelectromechanical systems (NEMS), which promises to impact a variety of sensor and actuator applications. The piezoelectric semiconductor GaAs is used as a platform for probing novel implementations of resonant nanomechanical actuation and frequency control. GaAs/AlGaAs heterostructures can be grown epitaxially, are easily amenable to suspended nanostructure fabrication, have a modest piezoelectric coefficient roughly twice that of quartz, and if appropriately doped with manganese, can form dilute magnetic compounds. In ordinary piezoelectric transducers there is a clear distinction between the metal electrodes and piezoelectric insulator. But this distinction is blurred in semiconductors. An integrated piezoelectric actuation mechanism is demonstrated in a series of suspended anisotype GaAs junctions, notably pin diodes. A dc bias was found to alter the resonance amplitude and frequency in such devices. The results are in good agreement with a model of strain based actuation encompassing the diode’s voltage-dependent carrier depletion width and impedance. A bandstructure engineering approach is employed to control the actuation efficiency by appropriately designing the doping level and thickness of the GaAs structure. Actuation and frequency are also sensitively dependent on the device’s crystallographic orientation. This combined tuning behavior represents a novel type of depletion-mediated electromechanical coupling in piezoelectric semiconductor nanostructures. All devices are actuated piezoelectrically, whereas three techniques are demonstrated for sensing: optical interferometry, piezoresistance and piezoelectricity. Finally, a nanoelectromechanical GaMnAs resonator is used to obtain the first measurement of magnetostriction in a dilute magnetic semiconductor. Resonance frequency shifts induced by field-dependent magnetoelastic stress are used to simultaneously map the magnetostriction and magnetic anisotropy constants over a wide range of temperatures. Owing to the central role of carriers in controlling ferromagnetic interactions in this material, the results appear to provide insight into a unique form of magnetoelastic behavior mediated by holes

    Magnetotransport properties of strained Ga0.95Mn0.05As epilayers close to the metal-insulator transition: Description using Aronov-Altshuler three-dimensional scaling theory

    Get PDF
    The magnitude of the anisotropic magnetoresistance (AMR) and the longitudinal resistance in compressively strained Ga0.95Mn0.05As epilayers were measured down to temperatures as low as 30 mK. Below temperatures of 3 K, the conductivity decreases [proportional]T^1/3 over 2 orders of magnitude in temperature. The conductivity can be well described within the framework of a three-dimensional scaling theory of Anderson's transition in the presence of spin scattering in semiconductors. It is shown that the samples are on the metallic side but very close to the metal-insulator transition. At lowest temperatures, a decrease in the AMR effect is observed, which is assigned to changes in the coupling between the remaining itinerant carriers and the local Mn 5/2-spin moments

    Domain-wall dynamics at micropatterned constrictions in ferromagnetic (Ga,Mn)As epilayers

    Get PDF
    The influence of sub-µm geometric constrictions on 90° magnetic domain-wall nucleation and propagation in stripes of ferromagnetic (Ga0.95,Mn0.05)As was explored. Measurements of the magnetic switching behavior were performed during ramping of an external magnetic field at constant rate and at constant field in the time domain. Demagnetizing fields are found to play a crucial role in the switching behavior around the region of the constriction. Depending on the sample's initial magnetization the constriction can either assist domain-wall nucleation or hinder its propagation

    Wiring Nanoscale Biosensors with Piezoelectric Nanomechanical Resonators

    Get PDF
    Nanoscale integrated circuits and sensors will require methods for unobtrusive interconnection with the macroscopic world to fully realize their potential. We report on a nanoelectromechanical system that may present a solution to the wiring problem by enabling information from multisite sensors to be multiplexed onto a single output line. The basis for this method is a mechanical Fourier transform mediated by piezoelectrically coupled nanoscale resonators. Our technique allows sensitive, linear, and real-time measurement of electrical potentials from conceivably any voltage-sensitive device. With this method, we demonstrate the direct transduction of neuronal action potentials from an extracellular microelectrode. This approach to wiring nanoscale devices could lead to minimally invasive implantable sensors with thousands of channels for in vivo neuronal recording, medical diagnostics, and electrochemical sensing

    Signal Amplification by Sensitive Control of Bifurcation Topology

    Get PDF
    We describe a novel amplification scheme based on inducing dynamical changes to the topology of a bifurcation diagram of a simple nonlinear dynamical system. We have implemented a first bifurcation-topology amplifier using a coupled pair of parametrically driven high-frequency nanoelectromechanical systems resonators, demonstrating robust small-signal amplification. The principles that underlie bifurcation-topology amplification are simple and generic, suggesting its applicability to a wide variety of physical, chemical, and biological systems

    Variability of acute extracellular action potential measurements with multisite silicon probes

    Get PDF
    Device miniaturization technologies have led to significant advances in sensors for extracellular measurements of electrical activity in the brain. Multisite, silicon-based probes containing implantable electrode arrays afford greater coverage of neuronal activity than single electrodes and therefore potentially offer a more complete view of how neuronal ensembles encode information. However, scaling up the number of sites is not sufficient to ensure capture of multiple neurons, as action potential signals from extracellular electrodes may vary due to numerous factors. In order to understand the large-scale recording capabilities and potential limitations of multisite probes, it is important to quantify this variability, and to determine whether certain key device parameters influence the recordings. Here we investigate the effect of four parameters, namely, electrode surface, width of the structural support shafts, shaft number, and position of the recording site relative to the shaft tip. This study employs acutely implanted silicon probes containing up to 64 recording sites, whose performance is evaluated by the metrics of noise, spike amplitude, and spike detection probability. On average, we find no significant effect of device geometry on spike amplitude and detection probability but we find significant differences among individual experiments, with the likelihood of detecting spikes varying by a factor of approximately three across trials
    • …
    corecore