1,300 research outputs found

    In-plane current-voltage characteristics and oscillatory Josephson-vortex flow resistance in La-free Bi2+x_{2+x}Sr2x_{2-x}CuO6+δ_{6+\delta} single crystals in high magnetic fields

    Full text link
    We have investigated the in-plane I(V)I(V) characteristics and the Josephson vortex flow resistance in high-quality La-free Bi2+x_{2+x}Sr2x_{2-x}CuO6+δ_{6+\delta} (Bi2201) single crystals in parallel and tilted magnetic fields at temperatures down to 40 mK. For parallel magnetic fields below the resistive upper critical field Hc2H^{*}_{c2}, the I(V)I(V) characteristic obey a power-law with a smooth change with increasing magnetic-field of the exponent from above 5 down to 1. In contrast to the double-layer cuprate Bi2212, the observed smooth change suggests that there is no change in the mechanism of dissipation (no Kosterlitz-Thouless transition) over the range of temperatures investigated. At small angles between the applied field and the abab-plane, prominent current steps in the I(V)I(V) characteristics and periodic oscillations of Josephson-vortex flow resistance are observed. While the current steps are periodic in the voltage at constant fields, the voltage position of the steps, together with the flux-flow voltage, increases nonlinearly with magnetic field. The abab-flow resistance oscillates as a function of field with a constant period over a wide range of magnetic fields and temperatures. The current steps in the I(V)I(V) characteristics and the flow resistance oscillations can be linked to the motion of Josephson vortices across layers

    Improving saw reliability in cutting a moving pipe

    Full text link
    The saws used to cut moving pipe are studied. The basic cutting parameters are determined, and improvement in saw performance is discussed. © 2013 Allerton Press, Inc

    Comment on: Role of Intermittency in Urban Development: A Model of Large-Scale City Formation

    Full text link
    Comment to D.H. Zanette and S.C. Manrubia, Phys. Rev. Lett. 79, 523 (1997).Comment: 1 page no figure

    Initial Conditions for Semiclassical Field Theory

    Get PDF
    Semiclassical approximation based on extracting a c-number classical component from quantum field is widely used in the quantum field theory. Semiclassical states are considered then as Gaussian wave packets in the functional Schrodinger representation and as Gaussian vectors in the Fock representation. We consider the problem of divergences and renormalization in the semiclassical field theory in the Hamiltonian formulation. Although divergences in quantum field theory are usually associated with loop Feynman graphs, divergences in the Hamiltonian approach may arise even at the tree level. For example, formally calculated probability of pair creation in the leading order of the semiclassical expansion may be divergent. This observation was interpretted as an argumentation for considering non-unitary evolution transformations, as well as non-equivalent representations of canonical commutation relations at different time moments. However, we show that this difficulty can be overcomed without the assumption about non-unitary evolution. We consider first the Schrodinger equation for the regularized field theory with ultraviolet and infrared cutoffs. We study the problem of making a limit to the local theory. To consider such a limit, one should impose not only the requirement on the counterterms entering to the quantum Hamiltonian but also the requirement on the initial state in the theory with cutoffs. We find such a requirement in the leading order of the semiclassical expansion and show that it is invariant under time evolution. This requirement is also presented as a condition on the quadratic form entering to the Gaussian state.Comment: 20 pages, Plain TeX, one postscript figur

    The square-lattice spiral magnet Ba_2CuGe_2O_7 in an in-plane magnetic field

    Full text link
    The magnetic structure of Ba_2CuGe_2O_7 is investigated by neutron diffraction in magnetic fields applied along several directions in the (a,b)(a,b) plane of the crystal. In relatively weak fields, H0.5H\lesssim 0.5~T, the propagation vector of the spin-spiral rotates to form a finite angle with the field direction. This angle depends on the orientation of HH itself. The rotation of the propagation vector is accompanied by a re-orientation of the plane of spin rotation in the spiral. The observed behaviour is well described by a continuous-limit form of a free energy functional that includes exchange and Dzyaloshinskii-Moriya interactions, as well as the Zeeman energy and an empirical anisotropy term.Comment: 7 pages, 6 figure

    Low-Temperature Properties of Quasi-One-Dimensional Molecule-Based Ferromagnets

    Full text link
    Quantum and thermal behaviors of low-dimensional mixed-spin systems are investigated with particular emphasis on the design of molecule-based ferromagnets. One can obtain a molecular ferromagnet by assembling molecular bricks so as to construct a low-dimensional system with a magnetic ground state and then coupling the chains or the layers again in a ferromagnetic fashion. Two of thus-constructed quasi-one-dimensional bimetallic compounds are qualitatively viewed within the spin-wave treatment, one of which successfully grows into a bulk magnet, while the other of which ends in a singlet ground state. Then, concentrating on the ferrimagnetic arrangement on a two-leg ladder which is well indicative of general coupled-chain ferrimagnets, we develop the spin-wave theory and fully reveal its low-energy structure. We inquire further into the ferromagnetic aspect of the ferrimagnetic ladder numerically calculating the sublattice magnetization and the magnetic susceptibility. There exists a moderate coupling strength between the chains in order to obtain the most ferromagnetic ferrimagnet.Comment: 10 pages, 7 figures embedded, to be published in J. Phys. Soc. Jpn. Vol.70, No.5 (2001

    External voltage sources and Tunneling in quantum wires

    Full text link
    We (re) consider in this paper the problem of tunneling through an impurity in a quantum wire with arbitrary Luttinger interaction parameter. By combining the integrable approach developed in the case of Quantum Hall edge states with the introduction of radiative boundary conditions to describe the adiabatic coupling to reservoirs, we are able to obtain the exact equilibrium and non equilibrium current. One of the most striking features observed is the appearance of negative differential conductances out of equilibrium in the strongly interacting regime g <=.2. In spite of the various charging effects, a remarkable form of duality is still observed. New results on the computation of transport properties in integrable impurity problems are gathered in appendices. In particular, we prove that the TBA results satisfy a remarkable relation, originally derived using the Keldysh formalism, between the order T^2 correction to the current out of equilibrium and the second derivative of this current at T=0 with respect to the voltage.Comment: 16 pages, 7 figure

    Large-signal coherent control of normal modes in quantum-well semiconductor microcavity

    Full text link
    We demonstrate coherent control of the cavity-polariton modes of a quantum-well semiconductor microcavity in a two-color scheme. The cavity enhancement of the excitonic nonlinearity gives rise to a large signal; modulating the relative phase of the excitation pulses between zero and π produces a differential reflectivity (ΔR/R)(ΔR/R) of up to 20%. The maximum nonlinear signal is obtained for cocircular pump and probe polarization. Excitation-induced dephasing is responsible for the incoherent nonlinear response, and limits the contrast ratio of the optical switching. © 2001 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71163/2/APPLAB-78-25-3941-1.pd

    Quantized Conductance of One-Dimensional Doped Mott Insulator

    Full text link
    The possible modification of quantized conductance of one-dimensional doped Mott insulator, where the Umklapp scattering plays an important role, is studied based on the method by Maslov-Stone and Ponomarenko. At T=0 and away from half-filling, the conductance is quantized as g=2e2/hg=2e^2/h and there is no renormalization by Umklapp scattering process. At finite temperatures, however, the quantization is affected depending on the gate voltage and temperature.Comment: 10 pages, 4 figures, uses jpsj.st
    corecore