4 research outputs found

    Fundamental modes of swimming correspond to fundamental modes of shape: engineering I-, U-, and S-shaped swimmers

    Get PDF
    Hydrogels have received increased attention due to their biocompatible material properties, adjustable porosity, ease of functionalization, tuneable shape, and Young's moduli. Initial work has recognized the potential that conferring out‐of‐equilibrium properties to these on the microscale holds and envisions a broad range of biomedical applications. Herein, a simple strategy to integrate multiple swimming modes into catalase‐propelled hydrogel bodies, produced via stop‐flow lithography (SFL), is presented and the different dynamics that result from bubble expulsion are studied. It is found that for “Saturn” filaments, with active poles and an inert midpiece, the fundamental swimming modes correspond to the first three fundamental shape modes that can be obtained by buckling elastic filaments, namely, I, U, and S‐shapes

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    An automated platform for assembling light-powered hydrogel microrobots and their subsequent chemical binding

    No full text
    This paper presents light powered hydrogel microrobots (100 ÎŒm), that are directed to specific locations in their environment by an automated platform. The microrobots are actuated by focused laser light and crawl in aqueous environments by periodic volumetric changes of a section of their bodies. The platform consists of a stage, manipulated by stepper drivers and controlled by a Raspberry PI 4. This positions the laser light in the desired locations to move microrobots towards a goal location. The microrobots are localized via a microscope camera and repetitive usage of an algorithm based on Hough Gradient Method. The optimal position for the laser is chosen before every step so that the disk reaches the goal as fast as possible. Multiple disks are moved to form a formation of predefined geometry. An algorithm for finding the optimum sequence of disk movements to suitable positions is introduced. Subsequently, the disks are bound together chemically, using local UV illumination as the binding trigger. The bound formation can perform useful tasks, such as pushing and depositing a cargo at a target location

    Photoresponsive hydrogel microcrawlers exploit friction hysteresis to crawl by reciprocal actuation

    No full text
    Mimicking the locomotive abilities of living organisms on the microscale, where the downsizing of rigid parts and circuitry presents inherent problems, is a complex feat. In nature, many soft-bodied organisms (inchworm, leech) have evolved simple, yet efficient locomotion strategies in which reciprocal actuation cycles synchronize with spatiotemporal modulation of friction between their bodies and environment. We developed microscopic (∌100 ÎŒm) hydrogel crawlers that move in aqueous environment through spatiotemporal modulation of the friction between their bodies and the substrate. Thermo-responsive poly-n-isopropyl acrylamide hydrogels loaded with gold nanoparticles shrink locally and reversibly when heated photothermally with laser light. The out-of-equilibrium collapse and reswelling of the hydrogel is responsible for asymmetric changes in the friction between the actuating section of the crawler and the substrate. This friction hysteresis, together with off-centered irradiation, results in directional motion of the crawler. We developed a model that predicts the order of magnitude of the crawler motion (within 50%) and agrees with the observed experimental trends. Crawler trajectories can be controlled enabling applications of the crawler as micromanipulator that can push small cargo along a surface
    corecore