13 research outputs found

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript

    Characterisation of four novel fibrillin-1 (FBN1) mutations in Marfan syndrome.

    No full text
    Forty-four percent of the fibrillin-1 gene (FBN1) from 19 unrelated families with Marfan syndrome was screened for putative mutations by single strand conformational polymorphism (SSCP) analysis. Four novel mutations were identified and characterised in five people, three with classical Marfan syndrome (two from one family, and one from an unrelated family), one with a more severe phenotype, and one with neonatal Marfan syndrome. The base substitutions G2113A, G2132A, T3163G, and G3458A result in amino acid substitutions A705T, C711Y, C1055G, and C1152Y, respectively. C711Y, C1055G, and C1152Y lead to replacement of a cysteine by another amino acid; the latter two occur within epidermal growth factor-like motifs in exon 25 and 27, respectively. The A705T mutation occurs at exon 16 adjacent to the GT splice site. The A705T and C711Y mutations, at exon 16 and 17, respectively, are the first documented in the second transforming growth factor-beta 1 binding protein-like motif of FBN1

    Microbial diversity and function in Antarctic freshwater ecosystems

    No full text
    Freshwater lakes occur through much of Antarctica and are characterized by short food chains dominated by microbes. Comparatively few studies have been made of continental freshwater lakes until recently, with the main emphasis being on the less extreme maritime Antarctic lakes. The wide range of trophic status seen at the northern extremes of the maritime Antarctic reduces markedly further south, but a wide range of micro-organisms occur throughout the latitudinal range. Information on seasonal and spatial patterns of microbial activity for freshwater lakes demonstrate rapid changes in community composition at certain times of year despite constant low temperatures. Benthic communities of cyanobacteria and bacteria are a feature of most lakes and are involved in a wide range of geochemical cycling. There is a need for more detailed taxonomic information on most groups and considerable potential for molecular studies
    corecore