41 research outputs found
Spin densities in 4f and 3d magnetic systems
This thesis documents investigations into three novel magnetic materials: the predicted halfmetal,
NiMnSb; the magnetoelectric perovskite, TbMnO3; and the layered superconductor,
EuFe
Dynamic compressive response of additively manufactured AlSi10Mg alloy hierarchical honeycomb structures
Periodic honeycombs have been used for their high strength, low weight and multifunctionality. The quasi-static and dynamic compressive responses of three types of additively manufactured AlSi10Mg honeycomb structures, specifically a single-scale honeycomb and two hierarchical honeycombs with two and three levels of hierarchy, respectively, have been investigated using experimental measurement and finite element (FE) simulations. The validated FE simulation has been employed to investigate the effects of relative density of the honeycombs and the key experimental parameters. The following failure modes of the three types of honeycombs have been observed both under quasi-static and dynamic compression: (1) the single-scale honeycomb experienced a transition of failure mechanism from local plastic buckling of walls to local damage of the parent material without buckling with the increase of the relative density of the honeycomb; (2) the hierarchical honeycombs all failed with parent material damage without buckling at different relative densities. For both quasi-static and dynamic compression, the hierarchical honeycombs offer higher peak nominal wall stresses compared to the single-scale honeycomb at low relative density of ; the difference is diminished as relative density increases, i.e. the three types of honeycombs can achieve similar peak wall stresses when Numerical results have suggested the hierarchical honeycombs can offer better energy absorption capacity than the single-scale honeycomb. The two-scale and three-scale hierarchical honeycombs achieved similar peak nominal wall stresses for both quasi-static and dynamic compression, which may suggest that the structural performance under out-of-plane compression is not sensitive to the hierarchical architecture. This work indicates that the structural advantage of hierarchical honeycombs can be utilised to develop high performance lightweight structural components
Selective laser melting of aluminium alloys
Metal additive manufacturing (AM) processes, such as selective laser melting, enable powdered metals to be formed into arbitrary 3D shapes. For aluminium alloys, which are desirable in many high-value applications for their low density and good mechanical performance, selective laser melting is regarded as challenging due to the difficulties in laser melting aluminium powders. However, a number of studies in recent years have demonstrated successful aluminium processing, and have gone on to explore its potential for use in advanced, AM componentry. In addition to enabling the fabrication of highly complex structures, selective laser melting produces parts with characteristically fine microstructures that yield distinct mechanical properties. Research is rapidly progressing in this field, with promising results opening up a range of possible applications across scientific and industrial sectors. This paper reports on recent developments in this area of research as well as highlighting some key topics that require further attention
Nanoindentation shows uniform local mechanical properties across melt pools and layers produced by selective laser melting of AlSi10Mg alloy
Single track and single layer AlSi10Mg has been produced by selective laser melting (SLM) of alloy powder on a AlSi12 cast substrate. The SLM technique produced a cellular-dendritic ultra-fined grained microstructure. Chemical composition mapping and nanoindentation showed higher hardness in the SLM material compared to its cast counterpart. Importantly, although there was some increase of grain size at the edge of melt pools, nanoindentation showed that the hardness (i.e. yield strength) of the material was uniform across overlapping tracks. This is attributed to the very fine grain size and homogeneous distribution of Si throughout the SLM material
Recommended from our members
Mechanical Properties of Selective Laser Melted AlSi10Mg: Nano, Micro, and Macro Properties
The selective laser melting (SLM) of aluminium alloys is of great current interest at both
the industrial and research levels. Aluminium poses a challenge to SLM compared with other
candidate materials, such as titanium alloys, stainless steels, and nickel-based alloys, because of
its high thermal diffusivity and low infrared absorptivity and tendency to result in relatively
porous parts. However, recent studies have reported the successful production of dense
AlSi10Mg parts using SLM. In this study, we report on the nano, micro, and macroscopic
mechanical properties of dense AlSi10Mg samples fabricated by SLM. Nanoindentation revealed
the hardness profile across individual melt pools building up the parts to be uniform. This is due
to the fine microstructure and uniform chemical elements distribution developed during the
process due to rapid solidification. Micro-hardness testing showed anisotropy in properties
according to the build orientation driven by the texture produced during solidification. Lastly, the
tensile and compressive behaviours of the parts were examined showing high strength under both
loading conditions as well as adequate amounts of strain. These superior mechanical properties
compared to those achieved via conventional manufacturing promote SLM as promising for
several applications.Mechanical Engineerin
Multidimensional Phononic Bandgaps in Three-Dimensional Lattices for Additive Manufacturing
We report on numerical modelling of three-dimensional lattice structures designed to provide phononic bandgaps. The examined lattice structures rely on two distinct mechanisms for bandgap formation: the destructive interference of elastic waves and internal resonance. Further to the effect of lattice type on the development of phononic bandgaps, we also present the effect of volume fraction, which enables the designer to control the frequency range over which the bandgaps exist. The bandgaps were identified from dispersion curves obtained using a finite element wave propagation modelling technique that provides high computational efficiency and high wave modelling accuracy. We show that lattice structures employing internal resonance can provide transmissibility reduction of longitudinal waves of up to −103 dB. Paired with the manufacturing freedom and material choice of additive manufacturing, the examined lattice structures can be tailored for use in wide-ranging applications including machine design, isolation and support platforms, metrology frames, aerospace and automobile applications, and biomedical devices
Low thermal expansion machine frame designs using lattice structures
In this work, we investigated tessellating cellular (or lattice) structures for use in a low thermal expansion machine frame. We proposed a concept for a lattice structure with tailorable effective coefficient of thermal expansion (CTE). The design is an assembly of two parts: a lattice outer part and a cylindrical inner part, which are made of homogenous materials with different positive CTEs. Several lattice design variations were investigated and their thermal and mechanical performance analysed using a finite element method. Our numerical models showed that a lattice design using Nylon 12 and ultra-high molecular weight polyethylene could yield an effective in-plane CTE of 1 × 10−9 K−1 (cf. 109 × 10−6 K−1 for solid Nylon 12). This paper showed that the combination of design optimisation and additive manufacturing can be used to achieve low CTE structures and, therefore, low thermal expansion machine frames of a few tens of centimetres in height
X-ray computed tomography of additively manufactured metal parts: the effect of magnification and reconstruction sampling on surface topography measurement
X-ray computed tomography (XCT) has recently become recognised as a viable method of surface topography measurement for additively manufactured (AM) metal parts [1–5]. AM is capable of producing internal features that are inaccessible to other surface topography measurement instruments [6,7], which makes XCT topography measurement particularly interesting to the AM community. A rigorous assessment of the ability of XCT systems to measure surface topography is, however, yet to be performed, and represents a complex challenge that must account for the large number of control variables involved in XCT measurement (e.g. voltage, current, magnification, computational corrections, filtering and surface determination). The aim of this study is to investigate the sensitivity of XCT topography measurement to some such control variables. More specifically, the effects of varying magnification (i.e. the ratio between source-to-detector distance and source-to-object distance [8]) and reconstruction sampling (i.e. the resolution of the volumetric grid filled during reconstruction [9]) are investigated. These variables have been chosen for their influence on the voxel size of the volumetric dataset, which in turn affects the extracted topography, and any subsequent texture assessment. In this work, the internal top surface of a hollow Ti6Al4V cubic artefact with an external size of (10 × 10 × 10) mm, fabricated via laser powder bed fusion (LPBF) is considered (see figure 1). Measurements are performed with geometric magnification (the first control variable) set at 5×, 10×, 20× and 50×, aligned with typical magnifications used during optical surface topography measurement. The effects of super- and sub-sampling in the volume reconstruction phase (the second control variable) are investigated using Nikon software (CT Pro). Texture parameters and reconstructed topography profiles obtained as a result of XCT measurements are investigated and compared to measurements by coherence scanning interferometry (CSI) and focus variation (FV). Datasets are bandwidth-matched [10] between instruments for the quantitative comparison of texture parameters. For profile comparison, CSI, FV and XCT areal topographies are relocated with geometric registration methods. Initial results indicate that, for selected combinations of magnification and sampling reconstruction, XCT surface topography is in agreement with topography obtained by CSI, FV and stylus measurements. The authors expect this study to provide information about how these control variables can be optimised, (with the purpose of decreasing measurement complexity and time) without significantly altering the quality of the topographic result