885 research outputs found
PinR mediates the generation of reversible population diversity in Streptococcus zooepidemicus
Opportunistic pathogens must adapt to and survive in a wide range of complex ecosystems. Streptococcus zooepidemicus is an opportunistic pathogen of horses and many other animals, including humans. The assembly of different surface architecture phenotypes from one genotype is likely to be crucial to the successful exploitation of such an opportunistic lifestyle. Construction of a series of mutants revealed that a serine recombinase, PinR, inverts 114 bp of the promoter of SZO_08560, which is bordered by GTAGACTTTA and TAAAGTCTAC inverted repeats. Inversion acts as a switch, controlling the transcription of this sortase-processed protein, which may enhance the attachment of S. zooepidemicus to equine trachea. The genome of a recently sequenced strain of S. zooepidemicus, 2329 (Sz2329), was found to contain a disruptive internal inversion of 7 kb of the FimIV pilus locus, which is bordered by TAGAAA and TTTCTA inverted repeats. This strain lacks pinR and this inversion may have become irreversible following the loss of this recombinase. Active inversion of FimIV was detected in three strains of S. zooepidemicus, 1770 (Sz1770), B260863 (SzB260863) and H050840501 (SzH050840501), all of which encoded pinR. A deletion mutant of Sz1770 that lacked pinR was no longer capable of inverting its internal region of FimIV. The data highlight redundancy in the PinR sequence recognition motif around a short TAGA consensus and suggest that PinR can reversibly influence the wider surface architecture of S. zooepidemicus, providing this organism with a bet-hedging solution to survival in fluctuating environments
Biomarkers in mesothelioma
Mesothelioma is an aggressive cancer of pleural and peritoneal cells that is difficult to diagnose and monitor. Numerous studies have attempted to identify a blood- or pleural fluid-based biomarker that could be used in the diagnostic pathway. More recently, there has been interest in the ability of serum/plasma biomarkers to monitor mesothelioma, given the development of newer treatments and limitations of radiological assessment. The majority of research has focused on soluble mesothelin, a soluble glycoprotein expressed by mesothelial cells. Although soluble mesothelin lacks the sensitivity to be used as a standalone diagnostic marker, serial measurements may be informative, with rising concentrations indicating disease progression and poor survival. High concentrations of other soluble glycoproteins, such as osteopontin, fibulin-3 and vascular endothelial growth factor are independently associated with poor prognosis at baseline, although further research is required to ascertain any role outside of clinical trials. More recent literature has focused on the development of novel biomarkers from discovery cohorts. Although many DNA and mRNA biomarkers show promise in the diagnosis or screening of mesothelioma, none have been prospectively evaluated for use in clinical practice. In this review article, we highlight the potential utility of biomarkers and evaluate the existing literature. </jats:p
Performance optimization of a leagility inspired supply chain model: a CFGTSA algorithm based approach
Lean and agile principles have attracted considerable interest in the past few decades. Industrial sectors throughout the world are upgrading to these principles to enhance their performance, since they have been proven to be efficient in handling supply chains. However, the present market trend demands a more robust strategy incorporating the salient features of both lean and agile principles. Inspired by these, the leagility principle has emerged, encapsulating both lean and agile features. The present work proposes a leagile supply chain based model for manufacturing industries. The paper emphasizes the various aspects of leagile supply chain modeling and implementation and proposes a new Hybrid Chaos-based Fast Genetic Tabu Simulated Annealing (CFGTSA) algorithm to solve the complex scheduling problem prevailing in the leagile environment. The proposed CFGTSA algorithm is compared with the GA, SA, TS and Hybrid Tabu SA algorithms to demonstrate its efficacy in handling complex scheduling problems
Identification of dfrA14 in two distinct plasmids conferring trimethoprim resistance in Actinobacillus pleuropneumoniae
OBJECTIVES: The objective of this study was to determine the distribution and genetic basis of trimethoprim resistance in Actinobacillus pleuropneumoniae isolates from pigs in England. METHODS: Clinical isolates collected between 1998 and 2011 were tested for resistance to trimethoprim and sulphonamide. The genetic basis of trimethoprim resistance was determined by shotgun WGS analysis and the subsequent isolation and sequencing of plasmids. RESULTS: A total of 16 (out of 106) A. pleuropneumoniae isolates were resistant to both trimethoprim (MIC >32 mg/L) and sulfisoxazole (MIC âĽ256 mg/L), and a further 32 were resistant only to sulfisoxazole (MIC âĽ256 mg/L). Genome sequence data for the trimethoprim-resistant isolates revealed the presence of the dfrA14 dihydrofolate reductase gene. The distribution of plasmid sequences in multiple contigs suggested the presence of two distinct dfrA14-containing plasmids in different isolates, which was confirmed by plasmid isolation and sequencing. Both plasmids encoded mobilization genes, the sulphonamide resistance gene sul2, as well as dfrA14 inserted into strA, a streptomycin-resistance-associated gene, although the gene order differed between the two plasmids. One of the plasmids further encoded the strB streptomycin-resistance-associated gene. CONCLUSIONS: This is the first description of mobilizable plasmids conferring trimethoprim resistance in A. pleuropneumoniae and, to our knowledge, the first report of dfrA14 in any member of the Pasteurellaceae. The identification of dfrA14 conferring trimethoprim resistance in A. pleuropneumoniae isolates will facilitate PCR screens for resistance to this important antimicrobial
Non-overlapping Distributed Tracking System Utilizing Particle Filter
Tracking people across multiple cameras is a challenging research area in visual computing, especially when these cameras have non-overlapping field of views. The important task is to associate a current subject with other prior appearances of the same subject across time and space in a camera network. Several known techniques rely on Bayesian approaches to perform the matching task. However, these approaches do not scale well when the dimension of the problem increases; e.g. when the number of subject or possible path increases. The aim of this paper is to propose a unified tracking framework using particle filters to efficiently switch between visual tracking (field of view tracking) and track prediction (non-overlapping region tracking). The particle filter tracking system utilizes a map (known environment) to assist the tracking process when targets leave the field of view of any camera. We implemented and tested this tracking approach in an in-house multiple cameras system as well as using on-line data. Promising results were obtained which suggested the feasibility of such an approach
- âŚ