1,719 research outputs found

    High throughput accelerator interface framework for a linear time-multiplexed FPGA overlay

    Get PDF
    Coarse-grained FPGA overlays improve design productivity through software-like programmability and fast compilation. However, the effectiveness of overlays as accelerators is dependent on suitable interface and programming integration into a typically processor-based computing system, an aspect which has often been neglected in evaluations of overlays. We explore the integration of a time-multiplexed FPGA overlay over a server-class PCI Express interface. We show how this integration can be optimised to maximise performance, and evaluate the area overhead. We also propose a user-friendly programming model for such an overlay accelerator system

    Corticosteroids for Pleural Infection:Should We STOPPE Studying?

    Get PDF

    Experimental evaluation of battery cells for space-based radar application

    Get PDF
    A test program was conducted to characterize five space-quality nickel-hydrogen (NiH2) battery cells. A subset of those tests was also done on five commercial nickel-cadmium (NiCd) cells, for correlation to the characteristics of an Energy Storage Unit Simulator. The test program implemented the recommendations of a 1991 study, as reported to IECEC-92. The findings of the tests are summarized, and expected impacts on the performance of the electrical power system (EPS) of a large space-based radar (SBR) surveillance satellite are derived. The main characteristics examined and compared were terminal voltage (average and transient) and capacity through discharge, equivalent series resistance, derived inductance and capacitance, charge return efficiency, and inter-pulse charge effectiveness

    Throughput oriented FPGA overlays using DSP blocks

    Get PDF
    Design productivity is a major concern preventing the mainstream adoption of FPGAs. Overlay architectures have emerged as one possible solution to this challenge, offering fast compilation and software-like programmability. However, overlays typically suffer from area and performance overheads due to limited consideration for the underlying FPGA architecture. These overlays have often been of limited size, supporting only relatively small compute kernels. This paper examines the possibility of developing larger, more efficient, overlays using multiple DSP blocks and then maximising utilisation by mapping multiple instances of kernels simultaneously onto the overlay to exploit kernel level parallelism. We show a significant improvement in achievable overlay size and overlay utilisation, with a reduction of almost 70% in the overlay tile requirement compared to existing overlay architectures, an operating frequency in excess of 300 MHz, and kernel throughputs of almost 60 GOPS

    Are coarse-grained overlays ready for general purpose application acceleration on FPGAs?

    Get PDF
    Combining processors with hardware accelerators has become a norm with systems-on-chip (SoCs) ever present in modern compute devices. Heterogeneous programmable system on chip platforms sometimes referred to as hybrid FPGAs, tightly couple general purpose processors with high performance reconfigurable fabrics, providing a more flexible alternative. We can now think of a software application with hardware accelerated portions that are reconfigured at runtime. While such ideas have been explored in the past, modern hybrid FPGAs are the first commercial platforms to enable this move to a more software oriented view, where reconfiguration enables hardware resources to be shared by multiple tasks in a bigger application. However, while the rapidly increasing logic density and more capable hard resources found in modern hybrid FPGA devices should make them widely deployable, they remain constrained within specialist application domains. This is due to both design productivity issues and a lack of suitable hardware abstraction to eliminate the need for working with platform-specific details, as server and desktop virtualization has done in a more general sense. To allow mainstream adoption of FPGA based accelerators in general purpose computing, there is a need to virtualize FPGAs and make them more accessible to application developers who are accustomed to software API abstractions and fast development cycles. In this paper, we discuss the role of overlay architectures in enabling general purpose FPGA application acceleration
    • …
    corecore