969 research outputs found

    Change Detection Techniques with Synthetic Aperture Radar Images: Experiments with Random Forests and Sentinel-1 Observations

    Get PDF
    This work aims to clarify the potential of incoherent and coherent change detection (CD) approaches for detecting and monitoring ground surface changes using sequences of synthetic aperture radar (SAR) images. Nowadays, the growing availability of remotely sensed data collected by the twin Sentinel-1A/B sensors of the European (EU) Copernicus constellation allows fast mapping of damage after a disastrous event using radar data. In this research, we address the role of SAR (amplitude) backscattered signal variations for CD analyses when a natural (e.g., a fire, a flash flood, etc.) or a human-induced (disastrous) event occurs. Then, we consider the additional pieces of information that can be recovered by comparing interferometric coherence maps related to couples of SAR images collected between a principal disastrous event date. This work is mainly concerned with investigating the capability of different coherent/incoherent change detection indices (CDIs) and their mutual interactions for the rapid mapping of "changed" areas. In this context, artificial intelligence (AI) algorithms have been demonstrated to be beneficial for handling the different information coming from coherent/incoherent CDIs in a unique corpus. Specifically, we used CDIs that synthetically describe ground surface changes associated with a disaster event (i.e., the pre-, cross-, and post-disaster phases), based on the generation of sigma nought and InSAR coherence maps. Then, we trained a random forest (RF) to produce CD maps and study the impact on the final binary decision (changed/unchanged) of the different layers representing the available synthetic CDIs. The proposed strategy was effective for quickly assessing damage using SAR data and can be applied in several contexts. Experiments were conducted to monitor wildfire's effects in the 2021 summer season in Italy, considering two case studies in Sardinia and Sicily. Another experiment was also carried out on the coastal city of Houston, Texas, the US, which was affected by a large flood in 2017; thus, demonstrating the validity of the proposed integrated method for fast mapping of flooded zones using SAR data

    On the linear response and scattering of an interacting molecule-metal system

    Full text link
    A many-body Green's function approach to the microscopic theory of plasmon-enhanced spectroscopy is presented within the context of localized surface-plasmon resonance spectroscopy and applied to investigate the coupling between quantum-molecular and classical-plasmonic resonances in monolayer-coated silver nanoparticles. Electronic propagators or Green's functions, accounting for the repeated polarization interaction between a single molecule and its image in a nearby nanoscale metal, are explicitly computed and used to construct the linear-response properties of the combined molecule-metal system to an external electromagnetic perturbation. Shifting and finite lifetime of states appear rigorously and automatically within our approach and reveal an intricate coupling between molecule and metal not fully described by previous theories. Self-consistent incorporation of this quantum-molecular response into the continuum-electromagnetic scattering of the molecule-metal target is exploited to compute the localized surface-plasmon resonance wavelength shift with respect to the bare metal from first principles.Comment: under review at Journal of Chemical Physic

    Trend and Multi‐Frequency Analysis Through Empirical Mode Decomposition: An Application to a 20‐Year Record of Atmospheric Carbonyl Sulfide Measurements

    Get PDF
    The Empirical Mode Decomposition (EMD) is a fully non-parametric analysis of frequency modes and trends in a given series that is based on the data alone. We have devised an improved strategy based on a series of best practices to use EMD successfully in the analysis of the monthly time series of carbonyl sulfide (OCS) atmospheric mole fractions measured at NOAA network stations (2000–2020). Long-term trends and intra- and inter-annual variability has been assessed. After a phase of generally increasing mole fractions up to 2015, with a temporary decline around 2009, we found that the OCS atmospheric mole fraction subsequently decreased at all stations, reflecting a recent imbalance in its total sources and losses. Our analysis has revealed a characteristic time scale for variation of 8–10 years. The variance associated with this long-term behavior ranges from urn:x-wiley:2169897X:media:jgrd58461:jgrd58461-math-000115% to 40% of the total strength of the signal, depending on location. Apart from this complex long-term behavior, the OCS time series show a strong annual cycle, which primarily results from the well-known OCS uptake by vegetation. In addition, we have also found one more frequency of minor variance intensity in the measured mole fraction time-history, which corresponds to periods in the range of 2–3 years. This inter-annual variability of OCS may be linked to the Quasi-Biennial Oscillation

    A Morse-theoretical analysis of gravitational lensing by a Kerr-Newman black hole

    Full text link
    Consider, in the domain of outer communication of a Kerr-Newman black hole, a point (observation event) and a timelike curve (worldline of light source). Assume that the worldline of the source (i) has no past end-point, (ii) does not intersect the caustic of the past light-cone of the observation event, and (iii) goes neither to the horizon nor to infinity in the past. We prove that then for infinitely many positive integers k there is a past-pointing lightlike geodesic of (Morse) index k from the observation event to the worldline of the source, hence an observer at the observation event sees infinitely many images of the source. Moreover, we demonstrate that all lightlike geodesics from an event to a timelike curve in the domain of outer communication are confined to a certain spherical shell. Our characterization of this spherical shell shows that in the Kerr-Newman spacetime the occurrence of infinitely many images is intimately related to the occurrence of centrifugal-plus-Coriolis force reversal.Comment: 14 pages, 2 figures; REVTEX; submitted to J. Math. Phy

    Finsler geodesics in the presence of a convex function and their applications

    Full text link
    We obtain a result about the existence of only a finite number of geodesics between two fixed non-conjugate points in a Finsler manifold endowed with a convex function. We apply it to Randers and Zermelo metrics. As a by-product, we also get a result about the finiteness of the number of lightlike and timelike geodesics connecting an event to a line in a standard stationary spacetime.Comment: 16 pages, AMSLaTex. v2 is a minor revision: title changed, references updated, typos fixed; it matches the published version. This preprint and arXiv:math/0702323v3 [math.DG] substitute arXiv:math/0702323v2 [math.DG

    Plasma technology increases the efficacy of prothioconazole against fusarium graminearum and fusarium proliferatum contamination of maize (Zea mays) seedlings

    Get PDF
    The contamination of maize by Fusarium species able to produce mycotoxins raises great concern worldwide since they can accumulate these toxic metabolites in field crop products. Further-more, little information exists today on the ability of Fusarium proliferatum and Fusarium graminearum, two well know mycotoxigenic species, to translocate from the seeds to the plants up to the kernels. Marketing seeds coated with fungicide molecules is a common practice; however, since there is a growing need for reducing chemicals in agriculture, new eco-friendly strategies are increasingly tested. Technologies based on ionized gases, known as plasmas, have been used for decades, with newer material surfaces, products, and approaches developed continuously. In this research, we tested a plasma-generated bilayer coating for encapsulating prothioconazole at the surface of maize seeds, to protect them from F. graminearum and F. proliferatum infection. A minimum amount of chemical was used, in direct contact with the seeds, with no dispersion in the soil. The ability of F. graminearum and F. proliferatum species to translocate from seeds to seedlings of maize has been clearly proven in our in vitro experiments. As for the use of plasma technology, the combined use of the plasma-generated coating with embedded prothioconazole was the most efficient approach, with a higher reduction of the infection of the maize seminal root system and stems. The debated capability of the two Fusarium species to translocate from seeds to seedlings has been demonstrated. The plasma-generated coating with embedded prothioconazole resulted in a promising sustainable approach for the protection of maize seedlings

    Gravitational lensing in spherically symmetric static spacetimes with centrifugal force reversal

    Get PDF
    In Schwarzschild spacetime the value r=3mr=3m of the radius coordinate is characterized by three different properties: (a) there is a ``light sphere'', (b) there is ``centrifugal force reversal'', (c) it is the upper limiting radius for a non-transparent Schwarschild source to act as a gravitational lens that produces infinitely many images. In this paper we prove a theorem to the effect that these three properties are intimately related in {\em any} spherically symmetric static spacetime. We illustrate the general results with some examples including black-hole spacetimes and Morris-Thorne wormholes.Comment: 18 pages, 3 eps-figure

    The IASI Water Deficit Index to Monitor Vegetation Stress and Early Drying in Summer Heatwaves: An Application to Southern Italy

    Get PDF
    The boreal hemisphere has been experiencing increasing extreme hot and dry conditions over the past few decades, consistent with anthropogenic climate change. The continental extension of this phenomenon calls for tools and techniques capable of monitoring the global to regional scales. In this context, satellite data can satisfy the need for global coverage. The main objective we have addressed in the present paper is the capability of infrared satellite observations to monitor the vegetation stress due to increasing drought and heatwaves in summer. We have designed and implemented a new water deficit index (wdi) that exploits satellite observations in the infrared to retrieve humidity, air temperature, and surface temperature simultaneously. These three parameters are combined to provide the water deficit index. The index has been developed based on the Infrared Atmospheric Sounder Interferometer or IASI, which covers the infrared spectral range 645 to 2760 cm−1 with a sampling of 0.25 cm−1. The index has been used to study the 2017 heatwave, which hit continental Europe from May to October. In particular, we have examined southern Italy, where Mediterranean forests suffer from climate change. We have computed the index’s time series and show that it can be used to indicate the atmospheric background conditions associated with meteorological drought. We have also found a good agreement with soil moisture, which suggests that the persistence of an anomalously high water deficit index was an essential driver of the rapid development and evolution of the exceptionally severe 2017 droughts

    A methodology for the customization of hinged ankle-foot orthoses based on in vivo helical axis calculation with 3D printed rigid shells

    Get PDF
    This study aims to develop techniques for ankle joint kinematics analysis using motion capture based on stereophotogrammetry. The scope is to design marker attachments on the skin for a most reliable identification of the instantaneous helical axis, to be targeted for the fabrication of customized hinged ankle-foot orthoses. These attachments should limit the effects of the experimental artifacts, in particular the soft-tissue motion artifact, which affect largely the accuracy of any in vivo ankle kinematics analysis. Motion analyses were carried out on two healthy subjects wearing customized rigid shells that were designed through 3D scans of the subjects’ lower limbs and fabricated by additive manufacturing. Starting from stereophotogrammetry data collected during walking and dorsi-plantarflexion motor tasks, the instantaneous and mean helical axes of ankle joint were calculated. The customized shells matched accurately the anatomy of the subjects and allowed for the definition of rigid marker clusters that improved the accuracy of in vivo kinematic analyses. The proposed methodology was able to differentiate between subjects and between the motor tasks analyzed. The observed position and dispersion of the axes were consistent with those reported in the literature. This methodology represents an effective tool for supporting the customization of hinged ankle-foot orthoses or other devices interacting with human joints functionality
    corecore