2,588 research outputs found
Large deviations for the macroscopic motion of an interface
We study the most probable way an interface moves on a macroscopic scale from an initial to a final position within a fixed time in the context of large deviations for a stochastic microscopic lattice system of Ising spins with Kac interaction evolving in time according to Glauber (non-conservative) dynamics. Such interfaces separate two stable phases of a ferromagnetic system and in the macroscopic scale are represented by sharp transitions. We derive quantitative estimates for the upper and the lower bound of the cost functional that penalizes all possible deviations and obtain explicit error terms which are valid also in the macroscopic scale. Furthermore, using the result of a companion paper about the minimizers of this cost functional for the macroscopic motion of the interface in a fixed time, we prove that the probability of such events can concentrate on nucleations should the transition happen fast enough
Elliptic CMB Sky
The ellipticity of the anisotropy spots of the Cosmic Microwave Background
measured by the Wilkinson Microwave Anisotropy Probe (WMAP) has been studied.
We find an average ellipticity of about 2, confirming with a far larger
statistics similar results found first for the COBE-DMR CMB maps, and then for
the BOOMERanG CMB maps. There are no preferred directions for the obliquity of
the anisotropy spots. The average ellipticity is independent of temperature
threshold and is present on scales both smaller and larger than the horizon at
the last scattering. The measured ellipticity characteristics are consistent
with being the effect of geodesics mixing occurring in an hyperbolic Universe,
and can mark the emergence of CMB ellipticity as a new observable constant
describing the Universe. There is no way of simulating this effect. Therefore
we cannot exclude that the observed behavior of the measured ellipticity can
result from a trivial topology in the popular flat -CDM model, or from
a non-trivial topology.Comment: 10 pages, 5 figures, the version to appear in Mod.Phys.Lett.
<b><i>Topoisomerase 1</i></b> Promoter Variants and Benefit from Irinotecan in Metastatic Colorectal Cancer Patients
Objective: Topoisomerase 1 (topo-1) is an important target for the treatment of metastatic colorectal cancer (CRC). The aim of the present study was to evaluate the correlation between topo-1 single-nucleotide polymorphisms (SNPs) and clinical outcome in metastatic CRC (mCRC) patients.
Methods: With the use of specific software (PROMO 3.0), we performed an in silico analysis of topo-1 promoter SNPs; the rs6072249 and rs34282819 SNPs were included in the study. DNA was extracted from 105 mCRC patients treated with FOLFIRI ± bevacizumab in the first line. SNP genotyping was performed by real-time PCR. Genotypes were correlated with clinical parameters (objective response rate, progression-free survival, and overall survival).
Results: No single genotype was significantly associated with clinical variables. The G allelic variant of rs6072249 topo-1 SNP is responsible for GC factor and X-box-binding protein transcription factor binding. The same allelic variant showed a nonsignificant trend toward a shorter progression-free survival (GG, 7.5 months; other genotypes, 9.3 months; HR 1.823, 95% CI 0.8904-3.734; p = 0.1).
Conclusion: Further analyses are needed to confirm that the topo-1 SNP rs6072249 and transcription factor interaction could be a part of tools to predict clinical outcome in mCRC patients treated with irinotecan-based regimens
Diffusive behavior for randomly kicked Newtonian particles in a spatially periodic medium
We prove a central limit theorem for the momentum distribution of a particle
undergoing an unbiased spatially periodic random forcing at exponentially
distributed times without friction. The start is a linear Boltzmann equation
for the phase space density, where the average energy of the particle grows
linearly in time. Rescaling time, the momentum converges to a Brownian motion,
and the position is its time-integral showing superdiffusive scaling with time
. The analysis has two parts: (1) to show that the particle spends
most of its time at high energy, where the spatial environment is practically
invisible; (2) to treat the low energy incursions where the motion is dominated
by the deterministic force, with potential drift but where symmetry arguments
cancel the ballistic behavior.Comment: 55 pages. Some typos corrected from previous versio
Scaling limits of a tagged particle in the exclusion process with variable diffusion coefficient
We prove a law of large numbers and a central limit theorem for a tagged
particle in a symmetric simple exclusion process in the one-dimensional lattice
with variable diffusion coefficient. The scaling limits are obtained from a
similar result for the current through -1/2 for a zero-range process with bond
disorder. For the CLT, we prove convergence to a fractional Brownian motion of
Hurst exponent 1/4.Comment: 9 page
New radio observations of anomalous microwave emission in the HII region RCW175
We have observed the HII region RCW175 with the 64m Parkes telescope at
8.4GHz and 13.5GHz in total intensity, and at 21.5GHz in both total intensity
and polarization. High angular resolution, high sensitivity, and polarization
capability enable us to perform a detailed study of the different constituents
of the HII region. For the first time, we resolve three distinct regions at
microwave frequencies, two of which are part of the same annular diffuse
structure. Our observations enable us to confirm the presence of anomalous
microwave emission (AME) from RCW175. Fitting the integrated flux density
across the entire region with the currently available spinning dust models,
using physically motivated assumptions, indicates the presence of at least two
spinning dust components: a warm component with a relatively large hydrogen
number density n_H=26.3/cm^3 and a cold component with a hydrogen number
density of n_H=150/cm^3. The present study is an example highlighting the
potential of using high angular-resolution microwave data to break model
parameter degeneracies. Thanks to our spectral coverage and angular resolution,
we have been able to derive one of the first AME maps, at 13.5GHz, showing
clear evidence that the bulk of the AME arises in particular from one of the
source components, with some additional contribution from the diffuse
structure. A cross-correlation analysis with thermal dust emission has shown a
high degree of correlation with one of the regions within RCW175. In the center
of RCW175, we find an average polarized emission at 21.5GHz of
2.2\pm0.2(rand.)\pm0.3(sys.)% of the total emission, where we have included
both systematic and statistical uncertainties at 68% CL. This polarized
emission could be due to sub-dominant synchrotron emission from the region and
is thus consistent with very faint or non-polarized emission associated with
AME.Comment: Accepted for publication in the Astrophysical Journa
Current large deviations in a driven dissipative model
We consider lattice gas diffusive dynamics with creation-annihilation in the
bulk and maintained out of equilibrium by two reservoirs at the boundaries.
This stochastic particle system can be viewed as a toy model for granular gases
where the energy is injected at the boundary and dissipated in the bulk. The
large deviation functional for the particle currents flowing through the system
is computed and some physical consequences are discussed: the mechanism for
local current fluctuations, dynamical phase transitions, the
fluctuation-relation
Trapping in the random conductance model
We consider random walks on among nearest-neighbor random conductances
which are i.i.d., positive, bounded uniformly from above but whose support
extends all the way to zero. Our focus is on the detailed properties of the
paths of the random walk conditioned to return back to the starting point at
time . We show that in the situations when the heat kernel exhibits
subdiffusive decay --- which is known to occur in dimensions --- the
walk gets trapped for a time of order in a small spatial region. This shows
that the strategy used earlier to infer subdiffusive lower bounds on the heat
kernel in specific examples is in fact dominant. In addition, we settle a
conjecture concerning the worst possible subdiffusive decay in four dimensions.Comment: 21 pages, version to appear in J. Statist. Phy
Free Energy Minimizers for a Two--Species Model with Segregation and Liquid-Vapor Transition
We study the coexistence of phases in a two--species model whose free energy
is given by the scaling limit of a system with long range interactions (Kac
potentials) which are attractive between particles of the same species and
repulsive between different species.Comment: 32 pages, 1 fig, plain tex, typeset twic
- …