5 research outputs found

    A study on the transition between seniority-type and collective excitations in 204Po and 206Po

    Get PDF
    Low-lying yrast states in 204Po and 206Po have been investigated by the γ-γ fast timing technique with LaBr3(Ce) detectors. Excited states of these nuclei were populated in the 197Au(11B,4n) and the 198Pt(12C,4n) fusion-evaporation reactions, respectively, at the FN-Tandem Facility at the University of Cologne. The lifetimes of the 4+1 states in both nuclei were measured, along with an upper limit for the 2+1 state in 204Po. The preliminary results are discussed in the scope of the systematic behavior of the transition strengths between yrast states in polonium isotopes

    Lifetime measurements of excited states in ¹⁶³W and the implications for the anomalous B(E2) ratios in transitional nuclei

    Get PDF
    This letter reports lifetime measurements of excited states in the odd-N nucleus 163W using the recoil-distance Doppler shift method to probe the core polarising effect of the i13/2 neutron orbital on the underlying soft triaxial even-even core. The ratio B(E2:21/2⁺ → 17/2⁺)/B(E2:17/2⁺ → 13/2⁺) is consistent with the predictions of the collective rotational model. The deduced B(E2) values provide insights into the validity of collective model predictions for heavy transitional nuclei and a geometric origin for the anomalous B(E2) ratios observed in nearby even-even nuclei is proposed

    Simulation of High Energy Muons

    No full text
    Under the scope of a CERN summer student project, a Geant4 physical model has been developed and committed to the Geant4 repository to allow precise simulation of high-energy muons and hadrons transport inside a material. Resulted angular distributions produced by this model have small deviations from those that were obtained by the Geant4 model used by default. High-energetic muons energy losses inside the CMS tracker have also been estimated and may vary from 0.05% up to 2.5%

    Structure of high-lying levels populated in the 96Y →96Zr β decay

    No full text
    WOS:000713124400027The nature of the high-lying final levels of the 96Ygs β decay, one of the three most important contributors to the high-energy reactor antineutrino spectrum, has been investigated in high-resolution γ-ray spectroscopy following the β decay as well as in a campaign of inelastic photon scattering experiments. The comprehensive approach establishes 1− levels associated with the Pygmy Dipole Resonance as high-lying final levels in the β decay. Branching ratios extracted from β decay complement photon scattering and allow the absolute E1 excitation strength to be determined for levels populated in both reactions. The combined data represents a comprehensive approach to the wavefunction of the 1− levels below the Qβ value, which are investigated in the Quasiparticle Phonon Model. The calculations reveal that the components populated in β decay contribute only with small amplitudes to the complex wavefunction of these 1− levels. A comparison of the β decay results to data from total absorption γ-ray spectroscopy demonstrates a good agreement between both measurements

    Measurement of the

    No full text
    The r-process has been shown to be robust in reproducing the abundance distributions of heavy elements, such as europium, seen in ultra-metal poor stars. In contrast, observations of elements 26 < Z < 47 display overabundances relative to r-process model predictions. A proposed additional source of early nucleosynthesis is the weak r-process in neutrino-driven winds of core-collapse supernovae. It has been shown that in this site (α,n) reactions are both crucial to nucleosynthesis and the main source of uncertainty in model-based abundance predictions. Aiming to improve the certainty of nucleosynthesis predictions, the cross section of the important reaction 86Kr(α,n)89Sr has been measured at an energy relevant to the weak r-process. This experiment was conducted in inverse kinematics at TRIUMF with the EMMA recoil mass spectrometer and the TIGRESS gamma-ray spectrometer. A novel type of solid helium target was used
    corecore