134 research outputs found

    Cascade-Exciton Model Analysis of Nucleon-Induced Fission Cross Sections of Lead and Bismuth at Energies from 45 to 500 MeV

    Get PDF
    An extended version of the Cascade-Exciton Model (CEM) of nuclear reactions is applied to analyze nucleon-induced fission cross sections for Bi-209 and Pb-208 nuclei in the 45-500 MeV energy range. The available data on linear momentum transfer are analyzed as well. The results are compared with analytical approximations resulting from a comparative critical analysis of all available experimental data. Systematic discrepancies between calculations and experimental data are revealed. A modification of the CEM is proposed, which significantly improves the model predictions for projectile energies above 100 MeV.Comment: 38 pages, 16 figures, 7 tables, LaTeX, submitted to Nucl. Sci. En

    Propagation of cosmic rays: nuclear physics in cosmic-ray studies

    Full text link
    The nuclei fraction in cosmic rays (CR) far exceeds the fraction of other CR species, such as antiprotons, electrons, and positrons. Thus the majority of information obtained from CR studies is based on interpretation of isotopic abundances using CR propagation models where the nuclear data and isotopic production cross sections in p- and alpha-induced reactions are the key elements. This paper presents an introduction to the astrophysics of CR and diffuse gamma rays and discusses some of the puzzles that have emerged recently due to more precise data and improved propagation models. Merging with cosmology and particle physics, astrophysics of CR has become a very dynamic field with a large potential of breakthrough and discoveries in the near future. Exploiting the data collected by the CR experiments to the fullest requires accurate nuclear cross sections.Comment: 6 pages, 13 figures, aip style files. Invited review talk at the Int. Conf. on Nuclear Data-2004 (Santa Fe, Sep. 26 - Oct. 1, 2004). To appear in AIP Conf. Pro

    CEM03 and LAQGSM03 - new modeling tools for nuclear applications

    Full text link
    An improved version of the Cascade-Exciton Model (CEM) of nuclear reactions realized in the code CEM2k and the Los Alamos version of the Quark-Gluon String Model (LAQGSM) have been developed recently at LANL to describe reactions induced by particles and nuclei for a number of applications. Our CEM2k and LAQGSM merged with the GEM2 evaporation/fission code by Furihata have predictive powers comparable to other modern codes and describe many reactions better than other codes; therefore both our codes can be used as reliable event generators in transport codes for applications. During the last year, we have made a significant improvements to the intranuclear cascade parts of CEM2k and LAQGSM, and have extended LAQGSM to describe photonuclear reactions at energies to 10 GeV and higher. We have produced in this way improved versions of our codes, CEM03.01 and LAQGSM03.01. We present a brief description of our codes and show illustrative results obtained with CEM03.01 and LAQGSM03.01 for different reactions compared with predictions by other models, as well as examples of using our codes as modeling tools for nuclear applications.Comment: 12 pages, 10 figures, to be published in Journal of Physics: Conference Series: Proc. Europhysics Conf. on New Trends in Nuclear Physics Applications and Technologies (NPDC19), Pavia, Italy, September 5-9, 200
    corecore