2 research outputs found

    EPR on Radiation-Induced Defects in SiO2

    No full text
    Continuous-wave electron paramagnetic resonance (EPR) spectroscopy has been the technique of choice for the studies of radiation-induced defects in silica (SiO2) for 60 years, and has recently been expanded to include more sophisticated techniques such as high-frequency EPR, pulse electron nuclear double resonance (ENDOR), and pulse electron spin echo envelope modulation (ESEEM) spectroscopy. Structural models of radiation-induced defects obtained from single-crystal EPR analyses of crystalline SiO2 (alfa-quartz) are often applicable to their respective analogues in amorphous silica (a-SiO2), although significant differences are common

    Effect of particle size in the TL response of natural quartz sensitized by high dose of gamma radiation and heat-treatments

    No full text
    This work investigates the effect of particle size in the thermoluminescence (TL) response of a quartz crystal that was initially crushed and classified into ten size fractions between 38 μm and 5 mm. Aliquots of each size fraction were sensitized with a dose of 25 kGy of γ rays and heat-treatments at 400 °C. TL glow curves of sensitized and non-sensitized samples were recorded as a function of different test-doses of γ rays. For the non-sensitized samples, the TL peak near 325 °C increases with the decrease in particle size. In the case of sensitized samples, a strong TL peak near 300 °C increases with the increase in particle size up to mean grain size equal to 304 μm. Above 304 μm, an abrupt reduction in the TL intensity is noticed for the sensitized peak. These effects are discussed in relation to the specific surface area of quartz particles and the intensity of the electron paramagnetic resonance signal of the E'1 center induced by the sensitization process
    corecore