1,017 research outputs found
Detection of a single cobalt microparticle with a microfabricated atomic magnetometer
We present magnetic detection of a single, 2 {\mu}m diameter cobalt
microparticle using an atomic magnetometer based on a microfabricated vapor
cell. These results represent an improvement by a factor of 105 in terms of the
detected magnetic moment over previous work using atomic magnetometers to
detect magnetic microparticles. The improved sensitivity is due largely to the
use of small vapor cells. In an optimized setup, we predict detection limits of
0.17 {\mu}m^3.Comment: 3 pages, 3 figure
Generation of Total Angular Momentum Eigenstates in Remote Qubits
We propose a scheme enabling the universal coupling of angular momentum of
remote noninteracting qubits using linear optical tools only. Our system
consists of single-photon emitters in a -configuration that are
entangled among their long-lived ground-state qubits through suitably designed
measurements of the emitted photons. In this manner, we present an
experimentally feasible algorithm that is able to generate any of the
symmetric and nonsymmetric total angular momentum eigenstates spanning the
Hilbert space of the -qubit compound.Comment: 5 pages, 4 figures, improved presentation. Accepted in Physical
Review
Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy
Infrared spectroscopy is a powerful tool for basic and applied science. The
molecular spectral fingerprints in the 3 um to 20 um region provide a means to
uniquely identify molecular structure for fundamental spectroscopy, atmospheric
chemistry, trace and hazardous gas detection, and biological microscopy. Driven
by such applications, the development of low-noise, coherent laser sources with
broad, tunable coverage is a topic of great interest. Laser frequency combs
possess a unique combination of precisely defined spectral lines and broad
bandwidth that can enable the above-mentioned applications. Here, we leverage
robust fabrication and geometrical dispersion engineering of silicon
nanophotonic waveguides for coherent frequency comb generation spanning 70 THz
in the mid-infrared (2.5 um to 6.2 um). Precise waveguide fabrication provides
significant spectral broadening and engineered spectra targeted at specific
mid-infrared bands. We use this coherent light source for dual-comb
spectroscopy at 5 um.Comment: 26 pages, 5 figure
Magnetic Dipole Sum Rules for Odd-Mass Nuclei
Sum rules for the total- and scissors-mode M1 strength in odd-A nuclei are
derived within the single-j interacting boson-fermion model. We discuss the
physical content and geometric interpretation of these sum rules and apply them
to ^{167}Er and ^{161}Dy. We find consistency with the former measurements but
not with the latter.Comment: 13 pages, Revtex, 1 figure, Phys. Rev. Lett. in pres
Transition Rates between Mixed Symmetry States: First Measurement in 94Mo
The nucleus 94Mo was investigated using a powerful combination of
gamma-singles photon scattering experiments and gamma-gamma-coincidence studies
following the beta-decay of 94mTc. The data survey short-lived J^pi=1+,2+
states and include branching ratios, E2/M1 mixing ratios, lifetimes, and
transition strengths. The mixed-symmetry (MS) 1+ scissors mode and the 2+ MS
state are identified from M1 strengths. A gamma transition between MS states
was observed and its rate was measured. Nine M1 and E2 strengths involving MS
states agree with the O(6) limit of the interacting boson model-2 using the
proton boson E2 charge as the only free parameter.Comment: 9 pages, 3 PostScript figures included, ReVTeX, accepted for
publication in Physical Review Letters, tentatively scheduled for August 9,
199
F-spin as a Partial Symmetry
We use the empirical evidence that F-spin multiplets exist in nuclei for only
selected states as an indication that F-spin can be regarded as a partial
symmetry. We show that there is a class of non-F-scalar IBM-2 Hamiltonians with
partial F-spin symmetry, which reproduce the known systematics of collective
bands in nuclei. These Hamiltonians predict that the scissors states have good
F-spin and form F-spin multiplets, which is supported by the existing data.Comment: 14 pages, 1 figur
- …