8 research outputs found

    Mucosal Trafficking of Vector-Specific CD4+ T Lymphocytes following Vaccination of Rhesus Monkeys with Adenovirus Serotype 5▿ †

    No full text
    Post hoc analysis of the phase 2b Step study evaluating a recombinant adenovirus serotype 5 (rAd5)-based HIV-1 vaccine candidate suggested a potential increased risk of HIV-1 acquisition in subjects who were baseline Ad5 seropositive and uncircumcised. These concerns had a profound impact on the HIV-1 vaccine development field, although the mechanism underlying this observation remains unknown. It has been hypothesized that rAd5 vaccination of baseline Ad5-seropositive individuals may have resulted in anamnestic, vector-specific CD4+ T lymphocytes that could have trafficked to mucosal sites and served as increased targets for HIV-1 infection. Here we show that Ad5-specific CD4+ T lymphocyte responses at mucosal sites following rAd5-Gag/Pol/Nef vaccination were comparable in rhesus monkeys with and without baseline Ad5 immunity. Moreover, the total cellular inflammatory infiltrates and the CD3+, CD4+, HLA-DR+, Ki67+, and langerin+ cellular subpopulations in colorectal and foreskin mucosa were similar in both groups. Thus, no greater trafficking of Ad5-specific CD4+ T lymphocytes to mucosal target sites was observed following rAd5 vaccination of rhesus monkeys with baseline Ad5 immunity. These findings from this nonhuman primate model provide evidence against the hypothesis that recruitment of vector-specific target cells to mucosal sites led to increased HIV-1 acquisition in Ad5-seropositive, uncircumcised vaccinees in the Step study

    Evaluating the sensitivity and specificity of promising circulating biomarkers to diagnose liver injury in humans

    No full text
    Early diagnosis of drug-induced liver injury (DILI) continues to be a major hurdle during drug development and post marketing. The objective of this study was to evaluate the diagnostic performance of promising biomarkers of liver injury - glutamate dehydrogenase (GLDH), cytokeratin-18 (K18), caspase-cleaved K18 (ccK18), osteopontin (OPN), macrophage colony-stimulating factor (MCSF), MCSF receptor (MCSFR), and microRNA-122 (miR-122) in comparison to the traditional biomarker alanine aminotransferase (ALT). Biomarkers were evaluated individually and as a multivariate model in a cohort of acetaminophen overdose (n=175) subjects and were further tested in cohorts of healthy adults (n=135), patients with liver damage from various causes (n=104), and patients with damage to the muscle (n=74), kidney (n=40), gastrointestinal tract (n=37) and pancreas (n=34). In the acetaminophen cohort, a multivariate model with GLDH, K18 and miR-122 was able to detect DILI more accurately than individual biomarkers alone. Furthermore, the three-biomarker model could accurately predict patients with liver injury compared to healthy volunteers or patients with damage to muscle, pancreas, gastrointestinal tract and kidney. Expression of K18, GLDH ad miR-122 was evaluated using a database of transcriptomic profiles across multiple tissues/organs in humans and rats. K18 mRNA (Krt18) and MiR-122 were highly expressed in liver whereas GLDH mRNA (Glud1) was widely expressed. We performed a comprehensive, comparative performance assessment of seven promising biomarkers and demonstrated that a three-biomarker multivariate model can accurately detect liver injury

    A protein kinase C α and β inhibitor blunts hyperphagia to halt renal function decline and reduces adiposity in a rat model of obesity-driven type 2 diabetes

    No full text
    Abstract Type 2 diabetes (T2D) and its complications can have debilitating, sometimes fatal consequences for afflicted individuals. The disease can be difficult to control, and therapeutic strategies to prevent T2D-induced tissue and organ damage are needed. Here we describe the results of administering a potent and selective inhibitor of Protein Kinase C (PKC) family members PKCα and PKCβ, Cmpd 1, in the ZSF1 obese rat model of hyperphagia-induced, obesity-driven T2D. Although our initial intent was to evaluate the effect of PKCα/β inhibition on renal damage in this model setting, Cmpd 1 unexpectedly caused a marked reduction in the hyperphagic response of ZSF1 obese animals. This halted renal function decline but did so indirectly and indistinguishably from a pair feeding comparator group. However, above and beyond this food intake effect, Cmpd 1 lowered overall animal body weights, reduced liver vacuolation, and reduced inguinal adipose tissue (iWAT) mass, inflammation, and adipocyte size. Taken together, Cmpd 1 had strong effects on multiple disease parameters in this obesity-driven rodent model of T2D. Further evaluation for potential translation of PKCα/β inhibition to T2D and obesity in humans is warranted
    corecore