516 research outputs found
Automated Classification of Periodic Variable Stars detected by the Wide-field Infrared Survey Explorer
We describe a methodology to classify periodic variable stars identified
using photometric time-series measurements constructed from the Wide-field
Infrared Survey Explorer (WISE) full-mission single-exposure Source Databases.
This will assist in the future construction of a WISE Variable Source Database
that assigns variables to specific science classes as constrained by the WISE
observing cadence with statistically meaningful classification probabilities.
We have analyzed the WISE light curves of 8273 variable stars identified in
previous optical variability surveys (MACHO, GCVS, and ASAS) and show that
Fourier decomposition techniques can be extended into the mid-IR to assist with
their classification. Combined with other periodic light-curve features, this
sample is then used to train a machine-learned classifier based on the random
forest (RF) method. Consistent with previous classification studies of variable
stars in general, the RF machine-learned classifier is superior to other
methods in terms of accuracy, robustness against outliers, and relative
immunity to features that carry little or redundant class information. For the
three most common classes identified by WISE: Algols, RR Lyrae, and W Ursae
Majoris type variables, we obtain classification efficiencies of 80.7%, 82.7%,
and 84.5% respectively using cross-validation analyses, with 95% confidence
intervals of approximately +/-2%. These accuracies are achieved at purity (or
reliability) levels of 88.5%, 96.2%, and 87.8% respectively, similar to that
achieved in previous automated classification studies of periodic variable
stars.Comment: 48 pages, 17 figures, 1 table, accepted by A
Variability Flagging in the Wide-field Infrared Survey Explorer Preliminary Data Release
The Wide-field Infrared Survey Explorer Preliminary Data Release Source Catalog contains over 257 million objects. We describe the method used to flag variable source candidates in the Catalog. Using a method based on the chi-square of single-exposure flux measurements, we generated a variability flag for each object, and have identified almost 460,000 candidate sources that exhibit significant flux variability with greater than ~7σ confidence. We discuss the flagging method in detail and describe its benefits and limitations. We also present results from the flagging method, including example light curves of several types of variable sources including Algol-type eclipsing binaries, RR Lyr, W UMa, and a blazar candidate
Verrucous Carcinoma of the Uterine Cervix Arising in a Giant Condyloma Acuminatum, Associated with Ichthyosis of the Endometrial Cavity
We describe a unique presentation of a cervical verrucous carcinoma (VC) associated with ichthyosis of the uterine cavity in
an 80-year old woman. Areas of transition from a giant condyloma (GC) were present in the VC. This paper also includes a review of the relevant
literature. VC of the cervix is an uncommon malignancy, and transition of a GC to VC is an interesting finding, confuting the theory
that they represent distinct entities, with different risk factors. Differently from GC, VC is considered to be causally related to HPV in a minority
of instances. Our results of p16 immunohistochemistry, the surrogate marker of high-risk human papillomavirus (HPV) infection, appear
to speak against the causal role of HPV in the pathogenesis of VC. Ichthyosis uteri may occasionally be associated with a cervical or
endometrial malignancy; however, we are not aware of any patient showing VC, GC and ichthyosis uteri at the same time
A hazard analysis method for systematic identification of safety requirements for user interface software in medical devices
© Springer International Publishing AG (outside the US) 2017. Formal methods technologies have the potential to verify the usability and safety of user interface (UI) software design in medical devices, enabling significant reductions in use errors and consequential safety incidents with such devices. This however depends on comprehensive and verifiable safety requirements to leverage these techniques for detecting and preventing flaws in UI software that can induce use errors. This paper presents a hazard analysis method that extends Leveson’s System Theoretic Process Analysis (STPA) with a comprehensive set of causal factor categories, so as to provide developers with clear guidelines for systematic identification of use-related hazards associated with medical devices, their causes embedded in UI software design, and safety requirements for mitigating such hazards. The method is evaluated with a case study on the Gantry-2 radiation therapy system, which demonstrates that (1) as compared to standard STPA, our method allowed us to identify more UI software design issues likely to cause use-related hazards; and (2) the identified UI software design issues facilitated the definition of precise, verifiable safety requirements for UI software, which could be readily formalized in verification tools such as Prototype Verification System (PVS).- U.S. Food and Drug Administration(NORTE-01-0145-FEDER-000016)Sandy Weininger (FDA), Scott Thiel (Navigant Consulting, Inc.), Michelle Jump (Stryker), Stefania Gnesi (ISTI/CNR) and the CHI+MED team (www.chi-med.ac.uk) provided useful feedback and inputs. Paolo Masci’s work is supported by the North Portugal Regional Operational Programme (NORTE 2020) under the PORTUGAL 2020 Partnership Agreement, and by the European Regional Development Fund (ERDF) within Project “NORTE-01-0145-FEDER-000016”.info:eu-repo/semantics/publishedVersio
Insomnia symptoms predict emotional dysregulation, impulsivity and suicidality in depressive bipolar II patients with mixed features
Introduction: Insomnia symptoms are very common in Bipolar Disorder. Our aim was to assess the potential association between insomnia, emotion dysregulation and suicidality in subjects with Bipolar Disorder. Methods: Seventy-seven subjects with Bipolar Disorder type II with a depressive episode with mixed features were recruited. Patients were assessed with SCID-DSM-5, the Insomnia Severity Index (ISI), the Difficulties in Emotion Regulation Scale (DERS), the Scale for Suicide Ideation (SSI) while evaluating manic and depressive symptoms. Results: Subjects with insomnia symptoms compared to those without showed higher scores in the DERS scale and subscales, including impulsivity, and in the SSI scale. Insomnia symptoms significantly predicted the severity of depressive symptoms, emotion dysregulation, and suicidality in subjects with bipolar disorder. In particular, insomnia was related to difficulties in some areas of emotion regulation including impulsivity. Emotion dysregulation significantly mediated the association between insomnia and depressive symptoms (Z = 2.9, p = 0.004). Furthermore, emotional impulsivity mediated the association between insomnia symptoms and suicidality (Z = 2.2, p = 0.03). Conclusion: In our study, subjects with bipolar disorder suffering from insomnia experienced a greater severity of depressive symptoms and suicidality compared to subjects without insomnia. Insomnia was associated with emotion dysregulation, impulsivity and suicidality. Further research is necessary to investigate if these latter features may benefit from early insomnia treatment in subjects with bipolar disorder
Developing approaches to control SARS-CoV-2 in a public hospital
The Territorial Public Health Care Company (in Italian, ASST) of the Saints Paolo e Carlo of Milano includes two large public hospitals, and several outpatients and territorial healthcare services. It employs 5642 workers. The outbreak of novel coronavirus disease 2019 (COVID-19) reached our ASST in the last week of February when a doctor in the Intensive Care Unit of the San Paolo Hospital was diagnosed with COVID-19. Our Occupational Health Unit immediately introduced measures to control the epidemic.
Our approach was based on contact tracing and isolation of asymptomatic infected workers. A \u2018close contact\u2019 was defined as a person who had face-to-face contact or spent at least 15 min in an indoor environment with a positive subject (patient, colleague or relative) without any protective equipment (surgical mask). From 27 February to 23 April we tested 2907 workers (51% of the total workforce) with nasopharyngeal swabs (NPS) using rtPCR for SARS-CoV-2 detection [1,2], with positive results in 152 hospital and 33 territorial workers (3% of the total workforce). All the infected workers were asked to fill in a daily electronic data collection form for the duration of the infection.
About 50% remained substantially asymptomatic for the quarantine period, which ended when the workers underwent two NPS on two consecutive days with a negative result. The time to recovery took from 12\u201347 days, with a median duration of about 30 days, which is longer than normally expected. Symptomatic workers showed only very mild symptoms; mainly loss/change of smell and taste. Four were hospitalized but none had severe or life-threatening infection. The data suggest that the \u2018active search approach\u2019 is more effective in closed communities such as groups of healthcare workers than generalized testing.
We have started a retrospective survey of 100 positive workers studying symptoms, source of exposure and co-morbidities using a modified version of the \u2018WHO novel coronavirus acute respiratory infection clinical characterization data tool\u2019, administered by telephone interview. Finally, in order to prepare for future outbreaks, we are testing a novel telemedicine approach enabling us to follow quarantined workers with a digital platform with a mobile phone app that provides remote video examinations and online symptoms and health parameter checking (body temperature, oxygen saturation, etc.). The platform facilitates rapid intervention. Using this approach, we can follow a large cohort of workers with continuous monitoring. The tool may also be able to reduce the rate of patients\u2019 hospitalization. We are also comparing those with positive and negative swabs using a rapid immunochromatographic assay for the detection of IgG and IgM antibodies to SARS-CoV-2 virus in whole blood to assess potential immunity. Preliminary results are promising for IgG, even though the protective capacity of this immunoglobulin is still unknown
Characterization of Extragalactic 24micron Sources in the Spitzer First Look Survey
In this Letter, we present the initial characterization of extragalactic 24um
sources in the Spitzer First Look Survey (FLS) by examining their counterparts
at 8um and R-band. The color-color diagram of 24-to-8 vs. 24-to-0.7um is
populated with 18,734 sources brighter than the 3sigma flux limit of 110uJy,
over an area of 3.7sq.degrees. The 24-to-0.7um colors of these sources span
almost 4 orders of magnitudes, while the 24-to-8um colors distribute at least
over 2 orders of magnitudes. In addition to identifying ~30% of the total
sample with infrared quiescent, mostly low redshift galaxies, we also found
that: (1) 23% of the 24um sources (~1200/sq.degrees) have very red 24-to-8 and
24-to-0.7 colors and are probably infrared luminous starbursts with
L(IR)>3x10^(11)Lsun at z>1. In particular, 13% of the sample (660/sq.degrees)
are 24um detected only, with no detectable emission in either 8um or R-band.
These sources are the candidates for being ULIRGs at z>2. (2) 2% of the sample
(85/sq.degrees) have colors similar to dust reddened AGNs, like Mrk231 at
z~0.6-3. (3) We anticipate that some of these sources with extremely red colors
may be new types of sources, since they can not be modelled with any familiar
type of spectral energy distribution. We find that 17% of the 24um sources have
no detectable optical counterparts brighter than R limit of 25.5mag. Optical
spectroscopy of these optical extremely faint 24um sources would be very
difficult, and mid-infrared spectroscopy from the Spitzer would be critical for
understanding their physical nature (Abridged).Comment: Accepted for publication in ApJ (Spitzer Special Issue
Obscured and unobscured active galactic nuclei in the Spitzer Space Telescope First Look Survey
Selection of active galactic nuclei (AGN) in the infrared allows the
discovery of AGN whose optical emission is extinguished by dust. In this paper,
we use the Spitzer Space Telescope First Look Survey (FLS) to assess what
fraction of AGN with mid-infrared luminosities comparable to quasars are missed
in optical quasar surveys due to dust obscuration. We begin by using the Sloan
Digital Sky Survey (SDSS) database to identify 54 quasars within the 4 deg^2
extragalactic FLS. These quasars occupy a distinct region in mid-infrared color
space by virtue of their strong, red, continua. This has allowed us to define a
mid-infrared color criterion for selecting AGN candidates. About 2000 FLS
objects have colors consistent with them being AGN, but most are much fainter
in the mid-infrared than the SDSS quasars, which typically have 8 micron flux
densities, S(8.0), ~1 mJy. We have investigated the properties of the 43
objects with S(8.0) >= 1 mJy satisfying our AGN color selection. This sample
should contain both unobscured quasars, and AGN which are absent from the SDSS
survey due to extinction in the optical. After removing 16 known quasars, three
probable normal quasars, and eight spurious or confused objects from the
initial sample of 43, we are left with 16 objects which are likely to be
obscured quasars or luminous Seyfert-2 galaxies. This suggests the numbers of
obscured and unobscured AGN are similar in samples selected in the mid-infrared
at S(8.0)~1 mJy.Comment: To appear in the ApJS Spitzer Special Issu
- …