262 research outputs found

    Risk factors and diagnostic biomarkers for nonalcoholic fatty liver disease-associated hepatocellular carcinoma: Current evidence and future perspectives

    Get PDF
    High rates of excessive calorie intake diets and sedentary lifestyles have led to a global increase in nonalcoholic fatty liver disease (NAFLD). As a result, this condition has recently become one of the leading causes of hepatocellular carcinoma (HCC). Furthermore, the incidence of NAFLD-associated HCC (NAFLD-HCC) is expected to increase in the near future. Advanced liver fibrosis is the most common risk factor for NAFLD-HCC. However, up to 50% of NAFLD-HCC cases develop without underlying liver cirrhosis. Epidemiological studies have revealed many other risk factors for this condition; including diabetes, other metabolic traits, obesity, old age, male sex, Hispanic ethnicity, mild alcohol intake, and elevated liver enzymes. Specific gene variants, such as single-nucleotide polymorphisms of patatin-like phospholipase domain 3, transmembrane 6 superfamily member 2, and membrane-bound O-acyl-transferase domain-containing 7, are also associated with an increased risk of HCC in patients with NAFLD. This clinical and genetic information should be interpreted together for accurate risk prediction. Alpha-fetoprotein (AFP) is the only biomarker currently recommended for HCC screening. However, it is not sufficiently sensitive in addressing this diagnostic challenge. The GALAD score can be calculated based on sex, age, lectin-bound AFP, AFP, and des-carboxyprothrombin and is reported to show better diagnostic performance for HCC. In addition, emerging studies on genetic and epigenetic biomarkers have also yielded promising diagnostic potential. However, further research is needed to establish an effective surveillance program for the early diagnosis of NAFLD-HCC

    Kohn anomalies in graphene nanoribbons

    Get PDF
    The quantum corrections to the energies of the Γ\Gamma point optical phonon modes (Kohn anomalies) in graphene nanoribbons are investigated. We show theoretically that the longitudinal optical modes undergo a Kohn anomaly effect, while the transverse optical modes do not. In relation to Raman spectroscopy, we show that the longitudinal modes are not Raman active near the zigzag edge, while the transverse optical modes are not Raman active near the armchair edge. These results are useful for identifying the orientation of the edge of graphene nanoribbons by G band Raman spectroscopy, as is demonstrated experimentally. The differences in the Kohn anomalies for nanoribbons and for metallic single wall nanotubes are pointed out, and our results are explained in terms of pseudospin effects.Comment: 11 pages, 6 figure

    Spiral ganglion cell degeneration‐induced deafness as a consequence of reduced GATA factor activity

    Full text link
    Zinc‐finger transcription factors GATA2 and GATA3 are both expressed in the developing inner ear, although their overlapping versus distinct activities in adult definitive inner ear are not well understood. We show here that GATA2 and GATA3 are co‐expressed in cochlear spiral ganglion cells and redundantly function in the maintenance of spiral ganglion cells and auditory neural circuitry. Notably, Gata2 and Gata3 compound heterozygous mutant mice had a diminished number of spiral ganglion cells due to enhanced apoptosis, which resulted in progressive hearing loss. The decrease in spiral ganglion cellularity was associated with lowered expression of neurotrophin receptor TrkC that is an essential factor for spiral ganglion cell survival. We further show that Gata2 null mutants that additionally bear a Gata2 YAC (yeast artificial chromosome) that counteracts the lethal hematopoietic deficiency due to complete Gata2 loss nonetheless failed to complement the deficiency in neonatal spiral ganglion neurons. Furthermore, cochlea‐specific Gata2 deletion mice also had fewer spiral ganglion cells and resultant hearing impairment. These results show that GATA2 and GATA3 redundantly function to maintain spiral ganglion cells and hearing. We propose possible mechanisms underlying hearing loss in human GATA2‐ or GATA3‐related genetic disorders.Our results demonstrate that GATA2 and GATA3 redundantly function to maintain inner ear spiral ganglion cells and hearing. We propose possible mechanisms underlying hearing loss in human GATA2‐ or GATA3‐related genetic disorders.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151287/1/gtc12705.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151287/2/gtc12705_am.pd

    Genome-wide identification and gene expression profiling of ubiquitin ligases for endoplasmic reticulum protein degradation

    Get PDF
    Endoplasmic reticulum (ER)-associated degradation (ERAD) is a mechanism by which unfolded proteins that accumulate in the ER are transported to the cytosol for ubiquitin–proteasome-mediated degradation. Ubiquitin ligases (E3s) are a group of enzymes responsible for substrate selectivity and ubiquitin chain formation. The purpose of this study was to identify novel E3s involved in ERAD. Thirty-seven candidate genes were selected by searches for proteins with RING-finger motifs and transmembrane regions, which are the major features of ERAD E3s. We performed gene expression profiling for the identified E3s in human and mouse tissues. Several genes were specifically or selectively expressed in both tissues; the expression of four genes (RNFT1, RNF185, CGRRF1 and RNF19B) was significantly upregulated by ER stress. To determine the involvement of the ER stress-responsive genes in ERAD, we investigated their ER localisation, in vitro autoubiquitination activity and ER stress resistance. All were partially localised to the ER, whereas CGRRF1 did not possess E3 activity. RNFT1 and RNF185, but not CGRRF1 and RNF19B, exhibited significant resistance to ER stressor in an E3 activity-dependent manner. Thus, these genes are possible candidates for ERAD E3s.This study was supported by Grants-in-Aid for Scientific Research (KAKENHI) 15K21706, 26460099, 24300135, 22020032, 25251014, 15K15067, 15K20001, 15K18377 and 15K19516 from the Ministry of Education, Culture, Sports, Science and Technology, Japan and also supported by the Takeda Science Foundation. We thank H. Hishigaki and Otsuka GEN Research Institute for bioinformatic analysis. We also thank M. Minami and T. Uehara for the helpful discussions. We are grateful to T. Yoshikawa, T. Ike, Y. Maeoka, Y. Wada and Z. Cao for their technical assistance. The authors would like to thank Enago (www.enago.jp) for the English language review
    corecore