466 research outputs found

    Nonequilibrium time evolution of higher order cumulants of conserved charges and event-by-event analysis

    Get PDF
    We investigate the time evolution of higher order cumulants of conserved charges in a volume with the diffusion master equation. Applying the result to the diffusion of non-Gaussian fluctuations in the hadronic stage of relativistic heavy ion collisions, we show that the fourth-order cumulant of net-electric charge at LHC energy is suppressed compared with the recently observed second-order cumulant at ALICE, if the higher order cumulants at hadronization are suppressed compared with their values in the hadron phase in equilibrium. The significance of the experimental information on the rapidity window dependence of various cumulants in investigating the history of the dynamical evolution of the hot medium created in relativistic heavy ion collisions is emphasized.Comment: 8 pages, 3 figure

    High harmonic fast waves in high beta plasmas

    Get PDF
    High harmonic fast magnetosonic wave in high beta/high dielectric plasmas is investigated. including the finite-Larmor-radius effects. In this regime, due to the combination of group velocity slow down and the high beta enhancement, the electron absorption via electron Landau and electron magnetic pumping becomes significant enough that one can expect a strong ({approximately} 100%) single pass absorption. By controlling the wave spectrum, the prospect of some localized electron heating and current drive appears to be feasible in high beta low-aspect-ratio tokamak regimes. Inclusion of finite-Larmor-radius terms shows an accessibility limit in the high ion beta regime ({beta}{sub i} = 50% for a deuterium plasma) due to mode-conversion into an ion Bernstein-wave-like mode while no beta limit is expected for electrons. With increasing ion beta, the ion damping can increase significantly particularly near the beta limits. The presence of energetic ion component expected during intense NBI and {alpha}-heating does not appear to modify the accessibility condition nor cause excessive wave absorption
    • …
    corecore