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We investigate the time evolution of higher order cumulants of conserved charges in a volume with
the diffusion master equation. Applying the result to the diffusion of non-Gaussian fluctuations in
the hadronic stage of relativistic heavy ion collisions, we show that the fourth-order cumulant of net-
electric charge at LHC energy is suppressed compared with the recently observed second-order cumulant
at ALICE, if the higher order cumulants at hadronization are suppressed compared with their values
in the hadron phase in equilibrium. The significance of the experimental information on the rapidity
window dependence of various cumulants in investigating the history of the dynamical evolution of
the hot medium created in relativistic heavy ion collisions is emphasized.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

Statistical mechanics tells us that observables are fluctuating
even in equilibrated medium. Because the fluctuations are de-
termined by the microscopic nature of the medium and sensi-
tive to critical phenomena, they can be exploited to reveal and
characterize properties of the medium. In experimental attempts
to map the global nature of QCD phase transition at nonzero
baryon density in relativistic heavy ion collisions, fluctuation ob-
servables, especially those of conserved charges, are believed to be
promising observables to diagnose the property of the hot medium
[1–8]. Active investigation in heavy ion collisions by event-by-
event analyses has recently been performed at the Relativistic
Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC)
[9–12]. Numerical analyses of higher order cumulants in equilib-
rium have been also carried out in lattice QCD Monte Carlo simu-
lations [13].

As an experiment in which fluctuations are measured, heavy
ion collisions have several notable features. First, higher order cu-
mulants, which characterize the non-Gaussian nature of fluctua-
tions, have been experimentally observed with good statistics up
to the fourth order [10,11]. The measurement is possible because
the system observed in the experiments is not large; the observed
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particle number is at most of order 103, while the event-by-event
statistics exceed 107. Second, the fluctuations observed in exper-
iments, especially those of conserved charges, are not necessarily
the same as those in an equilibrated medium, because of the dy-
namical nature of the hot medium created by heavy ion collisions.
Because of these properties, an appropriate description of the dy-
namical evolution of non-Gaussian fluctuations is required in order
to understand the experimental results on higher order cumu-
lants.

Concerning the second point, we remark that the recent exper-
imental result on the net-electric charge fluctuation, 〈(δN(net)

Q )2〉,
by ALICE Collaboration at LHC [12] supports the non-thermal na-
ture of the observed fluctuation. The value of 〈(δN(net)

Q )2〉 in this
experiment is suppressed compared with the one in the equili-
brated hadronic medium which has been calculated by lattice QCD
simulations [13] and the hadron resonance gas (HRG) model [14].
Moreover, the dependence of 〈(δN(net)

Q )2〉 on the size of the rapid-

ity window, �η, shows that the suppression of 〈(δN(net)
Q )2〉 is more

pronounced for larger �η. These experimental results are reason-
ably explained if one attributes the suppression to the survival
of fluctuations generated in the primordial deconfined medium
[1,3,4,15]. In Refs. [3,4], it is argued that 〈(δN(net)

Q )2〉 per unit ra-
pidity normalized by an extensive conserved quantity, such as en-
tropy, takes 2–3 times smaller value in the deconfined medium
than the hadronic one. After hadronization, this small fluctuation
approaches the equilibrated value in the hadronic medium. Since
the variation of the local density of a conserved charge is achieved
only through diffusion, the approach of the fluctuation to the equi-
librated value becomes slower as the volume where the charge is
counted becomes larger. 〈(δN(net)

)2〉 thus takes a smaller value as
Q

e.
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�η becomes larger, which is consistent with the experimental re-
sult at ALICE.

On the other hand, the value of 〈(δN(net)
Q )2〉 observed at RHIC

energy is consistent with the one in the equilibrated hadronic
medium [22,23]. The difference between RHIC and LHC energies
indicates that the evolution of the fluctuation in the hot medium
is qualitatively different between these energies.

In order to confirm the validity of the above explanation on
the fluctuation measured at ALICE and clarify the origin of the
qualitative difference between the experimental results at RHIC
and LHC energies, it should be instructive to measure the �η
dependences of various other fluctuation observables in addition
to 〈(δN(net)

Q )2〉 in these experiments. For example, the net-baryon

number fluctuation, 〈(δN(net)
B )2〉, is an experimentally-observable

conserved charge fluctuation [16,17], although neutral baryons are
not directly observable. Because the diffusion of the baryon num-
ber in the hadronic phase is slower than that of the electric charge
due to the large mass of its carriers, baryons, if the origin of the
suppression of 〈(δN(net)

Q )2〉 at ALICE is indeed traced back to the

smallness of the primordial fluctuations, 〈(δN(net)
B )2〉 must have

steeper suppression as a function of �η than 〈(δN(net)
Q )2〉.

In event-by-event analyses, one can also measure higher or-
der cumulants of conserved charges [10,11] such as the fourth-
order ones 〈(N(net)

Q )4〉c and 〈(N(net)
B )4〉c. The experimental analysis

of these observables as functions of �η can obviously provide us
more information on the time evolution of fluctuations in the hot
medium. So far, however, systematic studies on the dynamical evo-
lution of higher order cumulants in heavy ion collisions, whose
results can be compared with their experimental observation, have
not been carried out to the best of the authors’ knowledge. The
purpose of the present Letter is to make the first investigation
on this issue using a simple but theoretically lucid model, and to
make a prediction on the �η dependence of higher order cumu-
lants in relativistic heavy ion collisions.

2. Stochastic formalism to describe diffusive systems

In relativistic heavy ion collisions with sufficiently large colli-
sion energy per nucleon,

√
sNN, the hot medium created at mid-

rapidity has an approximate boost invariance. Useful coordinates
to describe such a system are the coordinate-space rapidity η
and proper time τ . We denote the net number of a conserved
charge per unit coordinate-space rapidity as n(η, τ ). In a class of
experiments, event-by-event fluctuations of the charge at kinetic
freezeout in a phase space corresponding to the rapidity window
determined by the experiment are observed. The phase space ap-
proximately corresponds to a finite coordinate-space rapidity in-
terval [1]. Assuming that the kinetic freezeout takes place at a
certain proper time τfo, the experimentally-observed conserved
charge number at mid-rapidity at RHIC and LHC is given by

Q (τ ) =
�η/2∫

−�η/2

dηn(η, τ ) (1)

at τ = τfo with the rapidity window to count the particle num-
ber �η. In the following, we investigate the time evolution of
higher order cumulants of Q (τ ).

In a sufficiently large space–time scale where hydrodynamic
equations at first order are applicable, the average of n(η, τ ) fol-
lows the diffusion equation

∂τn(η, τ ) = D∂2
ηn(η, τ ), (2)
where D is the diffusion constant in this coordinate system. In a
boost-invariantly expanding system, D receives a factor τ−2 com-
pared with the diffusion constant in Cartesian coordinate. In order
to describe fluctuations around the solution of Eq. (2), one may
employ a stochastic model, in which the time evolution of the de-
terministic part satisfies Eq. (2).

A choice of such stochastic models is the theory of hydrody-
namic fluctuations [18,19], in which the hydrodynamic equations
are promoted to Langevin equations with stochastic terms repre-
senting fast random forces arising from microscopic interactions.
In the equation corresponding to the conservation law of a charge,
Eq. (2), the derivative of the stochastic force, ∂ηξ(η, τ ), is added to
the right-hand side of Eq. (2) [15]. The equation is referred to as
stochastic diffusion equation. Up to Gaussian fluctuations, property
of ξ(η, τ ) is completely determined by the fluctuation–dissipation
relation, which is obtained from the locality of ξ(η, τ ) and large
time behavior of n(η, τ ) [18]. It is known that the stochastic equa-
tion determined in this way well describes Gaussian fluctuations in
fluids [18]. However, extension of this formalism to treat higher or-
der fluctuations is nontrivial. There is no unique generalization of
the fluctuation–dissipation relation to higher orders, or no a priori
justification of such extensions.

Concerning the difficulty in the description of non-Gaussian
fluctuations, it is worthwhile to note a theorem on Markov pro-
cess, which states that stochastic forces in a Langevin equa-
tion for Markov process are of Gaussian when the equation de-
scribes stochastic variables which are continuous and vary contin-
uously1 [20]. Since the standard theory of hydrodynamic fluctua-
tions describes a Markov process and the hydrodynamic variables
are continuous, the theorem demands that ξ(η, τ ) be of Gaussian;
to allow for nonzero higher order correlations of ξ(η, τ ), one must
relax at least one of the two conditions, i.e. Markovian and the
continuity.

Without the higher order correlation of ξ(η, τ ), all higher or-
der cumulants of Q (τ ) vanish in equilibrium unless D explic-
itly depends on n. Even in such a formalism, the relaxation of
non-Gaussianity starting from a particular initial condition can be
described. In the physics of fluctuations in relativistic heavy ion
collisions, however, nonzero higher order cumulants in equilib-
rium play a crucial role. First, the experimental results obtained
so far report nonzero higher order cumulants near the equilibrated
values [10–12]. Second, higher order cumulants are expected to in-
crease toward the equilibrated values in the hadronic medium [3,
4]. To reproduce these features, the stochastic model must obvi-
ously have nonzero higher order cumulants in equilibrium.

In the present study, instead of directly extending the theory
of hydrodynamic fluctuations, we investigate the time evolution
of higher order cumulants starting from a microscopic model. In
this exploratory analysis, as such a model we consider a simple
one-dimensional system composed of Brownian particles. Instead
of tracking the motion of each Brownian particle separately, how-
ever, we represent the system as follows (see, Fig. 1). First, the
coordinate η is divided into discrete cells with an equal length a.
Second, we consider a single species of particle for the moment,
and denote the number of particles in each cell, labeled by an
integer m, as nm , and the probability that each cell contains nm

1 This condition needs a brief explanation. For simplicity, we here assume that
the stochastic variable is one-dimensional, denoted by x and y. Let P (x, t + �t|y, t)
be the conditional probability of x at time t + �t given the system was at y at
time t . When the stochastic variable is continuous, it is shown that P (x, t +�t|y, t)
satisfies the Lindeberg condition lim�t→0

1
�t

∫
|x−y|>ε dx P (x, t + �t|y, t) = 0, for ar-

bitrary ε > 0 [20]. This condition is used effectively in the proof of the Gaussianity.
Note that, when the stochastic variables are discrete, the Lindeberg condition is ob-
viously violated.
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Fig. 1. System described by the diffusion master equation (3).

particles as P (n, τ ) with n = (. . . ,nm−1,nm,nm+1, . . .). Finally, we
assume that each particle moves to adjacent cells with a probabil-
ity γ per unit proper time, as a result of microscopic interactions
and random motion. The probability P (n, τ ) then follows the dif-
ferential equation

∂τ P (n, τ ) = γ
∑

m

[
(nm + 1)

{
P (n + em − em+1, τ )

+ P (n + em − em−1, τ )
} − 2nm P (n, τ )

]
, (3)

which is referred to as diffusion master equation in the litera-
ture [20], where em is the vector that all components are zero
except for mth one, which takes unity. We will see later that in
the continuum limit, a → 0, the average density and Gaussian fluc-
tuation of n(η, τ ) in Eq. (3) agree with those in the stochastic
diffusion equation with D = γ a2.

Before solving Eq. (3), some remarks are in order here. First,
Eq. (3) is often solved with an approximation that nm are suffi-
ciently large so that they can be regarded as continuous [20]. For
the present purpose, however, the equation should be solved with-
out this approximation, because once nm are set continuous, using
an argument similar to the proof of the above-mentioned theorem
on Markov processes one can show that all higher order cumulants
become zero in equilibrium [20]. Discrete nature of nm should be
kept to give rise to non-Gaussianity in equilibrium. Second, parti-
cles described by Eq. (3) behave as Brownian particles [21] without
correlations with one another. From this property, it is immedi-
ately concluded that the distribution of Q in the τ → ∞ limit
becomes of Poissonian, in which all cumulants take the same value
〈Q n〉c = 〈Q 〉, provided that �η is sufficiently narrower than the
total length of the system. Note that this behavior of cumulants is
consistent with the hadronic fluctuations in the HRG model, owing
to the non-interacting nature of hadrons in this model. Finally, our
model would not be suitable to describe the non-Gaussian fluctu-
ations enhanced near the critical point. To deal with this problem,
one may, for example, introduce explicit n dependence of the diffu-
sion constant and makes it bring about non-Gaussian fluctuations
without altering the Gaussianity of the random force. The exis-
tence of a slow critical mode near the critical point, which may
result in temporal correlations of the stochastic effects, also needs
to be considered. In the experimental results obtained so far, how-
ever, ratios of cumulants are not far from the value in the hadronic
medium [10–12], whereas an interesting suppression of higher or-
der cumulants, which might be a signal of a critical phenomenon,
is reported in the beam energy scan program at RHIC. This result
implies that critical phenomena do not come into play in the dif-
fusion in the hot medium at least in the late stage in heavy ion
collisions. In spite of the simplicity of the model Eq. (3), it is thus
expected that the model qualitatively well describes the time evo-
lution of 〈Q n〉c in the hadronic stage.

3. Solving diffusion master equation

Now, let us determine the time evolution of cumulants for the
stochastic process Eq. (3). We first consider the time evolution of
the probability P (n, τ ) with a fixed initial condition

P (n,0) =
∏

δnm,Mm , (4)

m

i.e. the initial particle numbers are fixed as nm = Mm for all m
without fluctuation. By introducing the factorial generating func-
tion,

G f(s, τ ) =
∑

n

∏
m

snm
m P (n, τ ), (5)

one obtains

∂τ G f(s, τ ) = γ
∑

m

(sm+1 − 2sm + sm−1)
∂

∂sm
G f(s, τ ). (6)

Eq. (6) is a first-order partial differential equation, and solved with
the method of characteristics. The solution with the initial condi-
tion Eq. (4) with the periodic boundary condition is given by

G f(s, τ ) =
∏
m

(∑
j

r je
−ω jτ e−2π jmi/N

)Mm

, (7)

with

r j = 1

N

∑
m′

sm′e2π jm′ i/N , (8)

ω j = −γ
(
e2π ji/N + e−2π ji/N − 2

)
, (9)

where N denotes the total number of cells and i is the imaginary
unit. The factorial cumulants of the Fourier transform of nm , ñk =∑

m nme−2πkmi/N , are given by

〈ñk1 ñk2 · · · ñkl 〉fc = ∂ l Kf

∂rk1∂rk2 · · · ∂rkl

∣∣∣∣
s=1

, (10)

with Kf(s, τ ) = log G f(s, τ ). Using Eqs. (10) and (7), the factorial
cumulants up to the fourth order are calculated to be

〈ñk〉fc = M̃ke−ωkτ , (11)

〈ñk1 ñk2〉fc = −M̃k1+k2 e−(ωk1 +ωk2 )τ
, (12)

〈ñk1 ñk2 ñk3〉fc = 2M̃k1+k2+k3 e−(ωk1 +ωk2 +ωk3 )τ
, (13)

〈ñk1 ñk2 ñk3 ñk4〉fc = −6M̃k1+k2+k3+k4 e−(ωk1 +ωk2 +ωk3 +ωk4 )τ
,

(14)

with M̃k = ∑
m Mme−2πkmi/N .

The cumulants of nm are given by

〈nm1nm2 · · ·nml 〉c = ∂ l K

∂θ1 · · · ∂θl

∣∣∣∣
θ=0

(15)

with K (θ , τ ) = Kf(s, τ )|sm=eθm . Using Eq. (15), they are related to
Eqs. (11)–(14) as

〈ñk〉c = 〈ñk〉fc, (16)

〈ñk1 ñk2〉c = 〈ñk1 ñk2〉fc + 〈ñk1+k2〉fc, (17)

and so forth.
Since we are interested in the solution of Eq. (3) in the con-

tinuum limit, a → 0, here we introduce the shorthand notation
for this limit: the particle density per unit rapidity n(η) = nm/a,
with the rapidity of the mth cell η = ma, ωp = γ a2 p2 with the
conjugate momentum p = 2πk/Na. Also, the probability P (n, τ ) is
promoted to a functional, which we denote as P [n(η), τ ]. Note,
however, that these notations are conceptual; In actual applica-
tions, the functional P [n(η), τ ] is understood as the limit of the
function P (n, τ ) with small but finite a. One finds from Eq. (11)
that the continuum limit has to be taken with D = γ a2 fixed, so
that the deterministic part of Eq. (3) follows Eq. (2). The factorial
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cumulants of ñ(p) in the continuum limit are obtained by simply
replacing k with p in Eqs. (11)–(14).

In the following, we consider an infinitely long system without
boundaries. With the fixed initial condition n(η,0) = M(η), the cu-
mulants of Eq. (1) at proper time τ are calculated to be

〈(
Q (τ )

)n〉
c =

∞∫
−∞

dη M(η)H (n)
X (η), (18)

with

H (1)
X (z) = I X (z/�η), (19)

H(2)
X (z) = I X (z/�η) − I X (z/�η)2, (20)

H(3)
X (z) = I X (z/�η) − 3I X (z/�η)2 + 2I X (z/�η)3, (21)

H (4)
X (z) = I X (z/�η) − 7I X (z/�η)2 + 12I X (z/�η)3

− 6I X (z/�η)4, (22)

and

I X (z) =
1/2∫

−1/2

dx

∫
dq

2π
e−X2q2

eiq(x+z), (23)

where �η and τ dependences are encoded in the dimensionless
parameter

X =
√

Dτ

�η
. (24)

Next, we extend this result to general initial conditions contain-
ing fluctuations. We also extend the result to systems with two
particle species with densities n1(η, τ ) and n2(η, τ ), and consider
cumulants of the difference

Q (net)(τ ) =
�η/2∫

−�η/2

dη
(
n1(η, τ ) − n2(η, τ )

)
, (25)

in order to compare the results with the cumulants of the net-
electric charge and baryon numbers, which are given by the dif-
ference of particle numbers. When the two particle species sep-
arately follow Eq. (3), the probability with the initial condition
P [n1(η),n2(η),0] = F [M1(η), M2(η)] is given by the superposition
of the solutions of fixed initial conditions

P
[
n1(η),n2(η), τ

] =
∑

{M1(η),M2(η)}
F
[
M1(η), M2(η)

]

× P M1

[
n1(η), τ

]
P M2

[
n2(η), τ

]
, (26)

where P M [n(η), τ ] is the solution of Eq. (3) with the fixed ini-
tial condition n(η,0) = M(η), and the sum runs over the func-
tion spaces of M1(η) and M2(η). From Eq. (26), one finds that
the cumulants of Eq. (25) are obtained by using the cumulants
of P M [n(η), τ ] and F [M1(η), M2(η)] using the superposition for-
mula given in Refs. [24,25]. The general results will be presented
in Ref. [25].

In the present Letter, we focus on the results for initial condi-
tions satisfying spatial uniformity and locality, i.e.
〈
Mi1(η1)Mi2(η2) · · · Mil (ηl)

〉
c

= [Mi1 Mi2 · · · Mil ]cδ(η1 − η2) · · · δ(η1 − ηl), (27)

where this equation defines [Mi1 Mi2 · · · Mil ]c on the right-hand
side, which are generalized susceptibilities to higher orders and
off-diagonal components. The condition Eq. (27) is satisfied, for
example, in free gas, as well as systems well described by hy-
drodynamic equations, in equilibrium. With this initial condition,
cumulants of Q (net)(τ ) are given by

〈Q (net)〉c = �η[M(net)]c, (28)〈
Q 2

(net)

〉
c = �η

{[
M2

(net)

]
c F (2)

X + [M(tot)]c
(
1 − F (2)

X

)}
, (29)

〈
Q 3

(net)

〉
c = �η

{[
M3

(net)

]
c F (3)

X + 3[M(net)M(tot)]c
(

F (2)
X − F (3)

X

)
+ [M(net)]c

(
1 − 3F (2)

X + 2F (3)
X

)}
, (30)〈

Q 4
(net)

〉
c = �η

{[
M4

(net)

]
c F (4)

X + 6
[
M2

(net)M(tot)
]

c

(
F (3)

X − F (4)
X

)
+ 3

[
M2

(tot)

]
c

(
F (2)

X − 2F (3)
X + F (4)

X

)
+ 4

[
M2

(net)

]
c

(
F (2)

X − 3F (3)
X + 2F (4)

X

)
+ [M(tot)]c

(
1 − 7F (2)

X + 12F (3)
X − 6F (4)

X

)}
, (31)

with

F (n)
X =

∞∫
−∞

dz
[
I X (z)

]n
, (32)

and M(net),(tot)(η) = M1(η) ∓ M2(η), respectively. F (n)
X with

n � 2 are monotonically decreasing functions of X and satisfy
F (n)

0 = 1 and limX→∞ F (n)
X = 0. From this property of F (n)

X and
Eqs. (28)–(31), one easily finds that the distribution of Q (net) ap-
proaches a Skellam one with

lim
τ→∞

〈
Q 2n+1

(net)

〉
c = �η[M(net)]c, (33)

lim
τ→∞

〈
Q 2n

(net)

〉
c = �η[M(tot)]c. (34)

From Eq. (29), one also finds that the time evolution of the Gaus-
sian fluctuation with the initial condition Eq. (27) is equivalent
with the one in the stochastic diffusion equation [15] with the
fluctuation in equilibrium Eq. (34).

The details of the procedure to deal with Eq. (3) omitted in this
Letter will be elucidated in the forthcoming publication [25].

4. Diffusion in hadronic medium

Next, let us investigate the diffusion of higher order cumulants
in the hadronic medium in relativistic heavy ion collisions using
the above results. To make the argument simple, we assume that
a boost invariant system with local equilibration is realized just
above the critical temperature of the deconfinement transition.
Then, the fluctuations at this time satisfy the locality condition
Eq. (27). The hot medium then undergoes hadronization and chem-
ical freezeout, which take place at almost the same time, τ = τ0,
for large

√
sNN. Because of the local charge conservations, fluctu-

ations of local densities of the conserved charges are unchanged
during these processes [1]. The fluctuations of conserved charges
just after hadronization thus also satisfy Eq. (27) to a good approx-
imation, with cumulants in the equilibrated deconfined medium,
which are significantly smaller than the ones in the equilibrated
hadronic medium [3,4,6]. We take this configuration at τ = τ0 as
the initial condition.

Due to the diffusion in the hadronic phase, the fluctuations
approach the equilibrated values in the hadronic medium until ki-
netic freezeout at τ = τfo. Provided that the τ dependence of the
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Fig. 2. Second and fourth order cumulants of Q (net) as functions of 1/X with the
initial condition [M2

(net)]c = [M4
(net)]c = [M2

(net)M(tot)]c = 0.

diffusion constant D in Eq. (2) is weak, this diffusion process is
approximately described by Eq. (3).

Now we consider the diffusion of the net-electric charge and
baryon numbers, N(net)

Q and N(net)
B , as conserved charges. Since ex-

perimental measurements of odd order cumulants of these charges
are difficult at LHC energy because of their smallness, we also limit
our attention to the second- and fourth-order cumulants. Because
these charges in the hadron phase are predominantly carried by
charged pions and nucleons, respectively, the cumulants of N(net)

Q

and N(net)
B at kinetic freezeout are approximately given by Eqs. (29)

and (31) with τ = τfo − τ0, where n1(η, τ ) and n2(η, τ ) are the
densities of positive and negative pions, and nucleons and anti-
nucleons, respectively.

To see the behavior of the cumulants determined by Eqs. (29)
and (31), one must fix the parameters for the initial condi-
tion in these equations. As discussed above, the cumulants of
the conserved charges at τ = τ0 are suppressed compared with
the equilibrated values. For even n, this condition is represented
as [Mn

(net)]c 
 [M(tot)]c, because the cumulants in equilibrium

are given by Eq. (34). Because of the suppression of [M2
(net)]c,

unless (δM(net))
2 and M(tot) have a strong positive correlation

[M2
(net)M(tot)]c 
 [M(tot)]c should also be satisfied. On the other

hand, the value of [M2
(tot)]c in Eq. (31) is not constrained by

the conservation laws and strongly depends on the hadronization
mechanism. In the following, we treat this quantity as a parame-
ter that characterizes the hadronization mechanism, and propose
to utilize this parameter to constrain the ambiguity in it.

In Fig. 2, we show the 1/X dependence of 〈Q 2
(net)〉c and

〈Q 4
(net)〉c given by Eqs. (29) and (31) normalized by the equili-

brated value Eq. (34) with the initial condition that the fluctuations
of conserved charges do not exist at all,

[
M2

(net)

]
c = [

M4
(net)

]
c = [

M2
(net)M(tot)

]
c = 0. (35)

Since the value of [M2
(tot)]c is not constrained by the local charge

conservation at hadronization as we discussed above, we regard
the ratio

c = [M2
(tot)]c

[M(tot)]c
, (36)

as a free parameter and vary c in the range 0 � c � 1.5. The result
on the second order, 〈Q 2

(net)〉c, reproduces the one obtained by the
stochastic diffusion equation [15].
Fig. 3. Second and fourth order cumulants of Q (net) as functions of 1/X with
[M2

(net)]c = [M4
(net)]c = [M2

(net)M(tot)]c = 0.5[M(tot)]c .

In the figure, one finds that the behaviors of 〈Q 4
(net)〉c and

〈Q 2
(net)〉c as functions of 1/X are qualitatively different. While the

behavior of 〈Q 4
(net)〉c depends on the value of c, 〈Q 4

(net)〉c is sup-

pressed compared with 〈Q 2
(net)〉c in the parameter range c � 1.5.

Note that 〈Q 4
(net)〉c can become negative in a range of 1/X , al-

though the fourth-order cumulants at the initial time and in
equilibrium are both non-negative. It is interesting that the sign
of the fourth-order cumulant can be flipped owing to the non-
equilibrium effect.

Since 1/X is proportional to �η, the result in Fig. 2 can directly
be compared with the experimental result on the �η dependence
of the net-electric charge cumulants 〈(N(net)

Q )2〉c = 〈(δN(net)
Q )2〉 and

〈(N(net)
Q )4〉c. In particular, Fig. 2 indicates that the 〈(N(net)

Q )4〉c at
ALICE, which has not been measured yet, will be suppressed com-
pared with the 〈(N(net)

Q )2〉c which has been already measured [12].
This statement is, however, altered for c � 2. The same conclusion
is also anticipated for the relation between the baryon number cu-
mulants, 〈(N(net)

B )2〉c and 〈(N(net)
B )4〉c.

The suppression of the fourth-order cumulant compared with
the second-order one can be intuitively understood as follows. In
our analysis, we consider time evolution with the initial condition
with small fluctuation. With this initial condition, the probability
distribution becomes wider as τ becomes larger, and thus longer
time is required until the probability in the tail is equilibrated. Be-
cause the higher order cumulants are sensitive to the tail behavior
of the probability distribution, the approach of the cumulants to
the equilibrated values is slower for higher order ones.

The result in Fig. 2 is obtained with the idealized initial con-
dition Eq. (35), where fluctuations of the conserved charges com-
pletely vanish at τ = τ0. Next, we see how this result is modified
when these cumulants have small but nonzero values at τ = τ0. In
Fig. 3 we show 1/X dependences of 〈Q 2

(net)〉c and 〈Q 4
(net)〉c with

the initial condition,

[
M2

(net)

]
c = [

M4
(net)

]
c = [

M2
(net)M(tot)

]
c = 1

2
[M(tot)]c. (37)

The figure shows that the suppression of 〈Q 4
(net)〉c compared with

〈Q 2
(net)〉c is not as clear as the result in Fig. 2, but 〈Q 4

(net)〉c <

〈Q 2
(net)〉c is still satisfied for a rather wide range of c. The sup-

pression of 〈Q 4
(net)〉c thus is a rather robust feature reflecting the

small initial fluctuations. Therefore, this behavior of the cumulants
at LHC energy can be used as an experimental probe to confirm
the suppression of the fluctuations at hadronization.
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The results in Figs. 2 and 3 also show that the cumulants
〈Q 2

(net)〉c and 〈Q 4
(net)〉c have characteristic behaviors as functions of

�η depending on the initial condition. These results indicate that
experimental measurements of not only the magnitudes of vari-
ous cumulants at a fixed �η but also their �η dependence enable
us to explore various information on the time evolution of the hot
medium and the hadronization mechanism in the experiments. In
particular, these analyses would enable us to estimate the magni-
tude of the parameter c. Because this parameter is sensitive to the
hadronization mechanism, such experimental information will be
used as an important clue to it.

5. Discussions

In this study, we employed a simple model, Eq. (3), to inves-
tigate the time evolution of non-Gaussian fluctuations. The model
is expected to describe well the qualitative feature of the diffusion
of higher order cumulants in the hadronic stage as already dis-
cussed. In order to explore the diffusion in each stage in heavy ion
collisions more quantitatively, however, one must take various ef-
fects into account. In the present model, for example, fluctuations
in equilibrium are given by the Poisson or Skellam distribution
as a result of the absence of interactions between each Brown-
ian particle. The model thus is not suitable to describe systems
where equilibrated fluctuations do not follow either of these dis-
tributions. The easiest way to treat non-Poissonian fluctuations is
to consider a system composed of several particle species having
different charges which separately follow Eq. (3). The fluctuations
of total charge of all particle species then become neither Pois-
sonian nor Skellam distribution. This modification would be used
as a first approximation to model the non-Skellam behavior of
the net-electric charge fluctuations. When the non-Poissonian be-
havior comes from interaction between particles, terms describing
the interaction should be introduced in Eq. (3). Next, the model
Eq. (3) describes a Markov process and the stochastic effect does
not have temporal correlations. To take account of nonzero tem-
poral correlations, the model should be extended to non-Markov
ones. Such a treatment would be required in, for example, deal-
ing with the non-Gaussianity associated with critical phenomena
and considering phenomena of the time scale of microscopic inter-
action. In the present study, it is also assumed that the numbers
of two particle species n1(η, τ ) and n2(η, τ ) which carry opposite
charges are separately conserved. While this assumption would be
well justified for baryon numbers after chemical freezeout, effects
of pair-creation and annihilation of electric charges would modify
the time evolution of the net-electric charge fluctuations quali-
tatively. Finally, whereas the system investigated in the present
study corresponds to the one with fixed diffusion constant D , τ
dependence of this parameter should also be taken into account
especially when one investigates expanding systems [19].

Besides these technical issues on the model, several assump-
tions also have been introduced on the geometry of the system and
initial condition. To simplify the arguments, in the present Letter
we limited our attention to the system which is infinitely long and
the event-by-event configuration of the initial distribution is uni-
form and local, and thus satisfy Eq. (27). The hot medium created
by heavy ion collisions, on the other hand, is a finite system, and
the effects of global charge conservation and the violation of boost
invariance modify the values of the fluctuation observables [1] and
render them dependent on the position of the rapidity window.
The validity of locality condition in Eq. (27) should also be in-
vestigated carefully. To investigate these effects, the model Eq. (3)
has to be solved with appropriate boundary conditions and vari-
ous initial conditions. Part of these issues will be investigated in
the forthcoming paper [25].
In the present study, we limited our attention to sufficiently
large

√
sNN, where the measurements of odd order cumulants are

difficult owing to their smallness. On the other hand, in the range
of

√
sNN where the beam energy scan program at RHIC is explor-

ing, the third-order cumulants are also observable [10,11] and will
carry significant information on the QCD phase transition [7]. The
time evolution and �η dependence of the third-order cumulants
will also be discussed in Ref. [25].

In the present Letter, we investigated the time evolution of non-
Gaussian fluctuations of conserved charges in a volume through
diffusion using the diffusion master equation (3), which is in-
tended to model the time evolution of higher order cumulants
of conserved charges N(net)

Q and N(net)
B in the hadronic stage

of relativistic heavy ion collisions. Our analysis shows that the
fourth-order cumulant 〈(N(net)

Q )4〉c is suppressed compared with

the second-order one (〈N(net)
Q )2〉c, provided that the suppression

of 〈(N(net)
Q )2〉c at ALICE [12] is a consequence of the survival of the

smallness of the fluctuation at the primordial stage. The same con-
clusion is also anticipated for baryon number cumulants. It should,
however, be noted that this result qualitatively depends on the pa-
rameter c in Eq. (36), which is not constrained only by the local
charge conservation and sensitive to hadronization mechanism. We
emphasize that the fourth-order cumulants of net-electric charge
and baryon numbers, 〈(N(net)

Q )4〉c and 〈(N(net)
B )4〉c, can be observed

as functions of �η in the mid-rapidity region in heavy ion colli-
sions at LHC and RHIC. The comparison of the experimental data
on various cumulants with the present analysis will reveal the dy-
namical evolution of fluctuations and hadronization mechanism in
heavy ion collisions.
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