74 research outputs found

    Rituximab therapy in nephrotic syndrome due to AH amyloidosis

    Get PDF
    This is an electronic version of an article published in Amyloid 2009, Vol. 16, No. 3 : Pages 178-180. Amyloid is available online at: http://informahealthcare.com/doi/pdf/10.1080/13506120903090940We report a patient with AH amyloidosis associated with lymphoplasmacytic leukemia that has remained in a stable state with a nephrotic syndrome for 17 months since the commencement of cyclic rituximab therapy aimed at suppression of pathogenetic gamma heavy chains. Free light chains in serum and CD20-positive cells in peripheral blood were useful as hematological markers in the patient. Rituximab might be a potent therapeutic option for AH amyloidosis associated with a B-cell lymphoproliferative disorder.ArticleAMYLOID. 16(3):178-180 (2009)journal articl

    A 100 W-Class Water-Vapor Hall Thruster for Constellations and Space Explorations by SmallSats

    Get PDF
    The laboratory models of a water-vapor Hall thruster and LaB6 thermionic cathode were developed and tested. To optimize the thruster design to water-vapor propellant, the geometrical investigation was conducted. After testing six different models, the smallest thruster, with an outer diameter of 20 mm, was found to be the most suitable for 100-W class operation. This thruster was able to be operated less than 100 W at 200 V. In addition, the discharge power was suppressed to 200 W even at 300 V. Based on the plume diagnostics, the thrust force of 2.9 mN, specific impulse of 650 s, and anode efficiency of 4.6 % were obtained as a representative performance of this 300 V operating point. After the thruster operation was achieved, the cathode coupling test was conducted to demonstrate electron emission under water-vapor plasma existence. As a result of this experiment, the effective increase in electron current compared to the previous stand-alone tests was confirmed as well as the compatability to the water-vapor plasma plume. On the other hand, the electron emission current has not achieved 100 mA-class yet and the required heating power was predicted over 100 W; thus, further improvement is progressing

    Search for Outer Massive Bodies around Transiting Planetary Systems: Candidates of Faint Stellar Companions around HAT-P-7

    Full text link
    We present results of direct imaging observations for HAT-P-7 taken with the Subaru HiCIAO and the Calar Alto AstraLux. Since the close-in transiting planet HAT-P-7b was reported to have a highly tilted orbit, massive bodies such as giant planets, brown dwarfs, or a binary star are expected to exist in the outer region of this system. We show that there are indeed two candidates for distant faint stellar companions around HAT-P-7. We discuss possible roles played by such companions on the orbital evolution of HAT-P-7b. We conclude that as there is a third body in the system as reported by Winn et al. (2009, ApJL, 763, L99), the Kozai migration is less likely while planet-planet scattering is possible.Comment: 8 pages, 3 figures, 2 tables, PASJ in pres

    Polarimetric Imaging of Large Cavity Structures in the Pre-transitional Protoplanetary Disk around PDS 70: Observations of the disk

    Full text link
    We present high resolution H-band polarized intensity (PI; FWHM = 0."1: 14 AU) and L'-band imaging data (FWHM = 0."11: 15 AU) of the circumstellar disk around the weak-lined T Tauri star PDS 70 in Centaurus at a radial distance of 28 AU (0."2) up to 210 AU (1."5). In both images, a giant inner gap is clearly resolved for the first time, and the radius of the gap is ~70 AU. Our data show that the geometric center of the disk shifts by ~6 AU toward the minor axis. We confirm that the brown dwarf companion candidate to the north of PDS 70 is a background star based on its proper motion. As a result of SED fitting by Monte Carlo radiative transfer modeling, we infer the existence of an optically thick inner disk at a few AU. Combining our observations and modeling, we classify the disk of PDS 70 as a pre-transitional disk. Furthermore, based on the analysis of L'-band imaging data, we put an upper limit mass of companions at ~30 to ~50MJ within the gap. Taking account of the presence of the large and sharp gap, we suggest that the gap could be formed by dynamical interactions of sub-stellar companions or multiple unseen giant planets in the gap.Comment: accepted by APJ
    corecore