20 research outputs found

    Enrichment of calcifying extracellular vesicles using density-based ultracentrifugation protocol

    Get PDF
    Calcifying extracellular vesicles (EVs) released from cells within atherosclerotic plaques have received increased attention for their role in mediating vascular calcification, a major predictor of cardiovascular morbidity and mortality. However, little is known about the difference between this pathologic vesicle population and other EVs that contribute to physiological cellular processes. One major challenge that hinders research into these differences is the inability to selectively isolate calcifying EVs from other vesicle populations. In this study, we hypothesized that the formation of mineral within calcifying EVs would increase the density of the vesicles such that they would pellet at a faster rate during ultracentrifugation. We show that after 10 min of ultracentrifugation at 100,000×g, calcifying EVs are depleted from the conditioned media of calcifying coronary artery smooth muscle cells and are enriched in the pelleted portion. We utilized mass spectrometry to establish functional proteomic differences between the calcifying EVs enriched in the 10 min ultracentrifugation compared to other vesicle populations preferentially pelleted by longer ultracentrifugation times. The procedures established in this study will allow us to enrich the vesicle population of interest and perform advanced proteomic analyses to find subtle differences between calcifying EVs and other vesicle populations that may be translated into therapeutic targets for vascular calcification. Finally, we will show that the differences in ultracentrifugation times required to pellet the vesicle populations can also be used to estimate physical differences between the vesicles

    Schwann-Spheres Derived from Injured Peripheral Nerves in Adult Mice - Their In Vitro Characterization and Therapeutic Potential

    Get PDF
    Multipotent somatic stem cells have been identified in various adult tissues. However, the stem/progenitor cells of the peripheral nerves have been isolated only from fetal tissues. Here, we isolated Schwann-cell precursors/immature Schwann cells from the injured peripheral nerves of adult mice using a floating culture technique that we call “Schwann-spheres." The Schwann-spheres were derived from de-differentiated mature Schwann cells harvested 24 hours to 6 weeks after peripheral nerve injury. They had extensive self-renewal and differentiation capabilities. They strongly expressed the immature-Schwann-cell marker p75, and differentiated only into the Schwann-cell lineage. The spheres showed enhanced myelin formation and neurite growth compared to mature Schwann cells in vitro. Mature Schwann cells have been considered a promising candidate for cell-transplantation therapies to repair the damaged nervous system, whereas these “Schwann-spheres" would provide a more potential autologous cell source for such transplantation

    N-acetylglucosamine-1-Phosphate Transferase Suppresses Lysosomal Hydrolases in Dysfunctional Osteoclasts: A Potential Mechanism for Vascular Calcification

    No full text
    In addition to increased differentiation of vascular smooth muscle cells into osteoblast-like phenotypes, the limited accumulation of osteoclasts in atherosclerotic plaques or their dysfunction may participate in potential mechanisms for vascular calcification. N-acetylglucosamine-1-phosphate transferase containing alpha and beta subunits (GNPTAB) is a transmembrane enzyme complex that mediates the vesicular transport of lysosomal hydrolases. GNPTAB may also regulate the biogenesis of lysosomal hydrolases from bone-marrow derived osteoclasts. In this study, the areas surrounding calcification in human atherosclerotic plaques contained high levels of GNPTAB and low levels of lysosomal hydrolases such as cathepsin K (CTSK) and tartrate-resistant acid phosphatase (TRAP), as demonstrated by immunohistochemistry and laser-capture microdissection-assisted mRNA expression analysis. We therefore hypothesized that GNPTAB secretion may suppress the release of CTSK and TRAP by vascular osteoclast-like cells, thus causing their dysfunction and reducing the resorption of calcification. We used human primary macrophages derived from peripheral blood mononuclear cells, an established osteoclast differentiation model. GNPTAB siRNA silencing accelerated the formation of functional osteoclasts as detected by increased secretion of CTSK and TRAP and increased their bone resorption activity as gauged by resorption pits assay. We concluded that high levels of GNPTAB inhibit secretion of lysosomal hydrolases in dysfunctional osteoclasts, thereby affecting their resorption potential in cardiovascular calcification

    Licochalcones extracted from Glycyrrhiza inflata inhibit platelet aggregation accompanied by inhibition of COX-1 activity.

    No full text
    Licochalcones extracted from Glycyrrhiza inflata are known to have a variety of biological properties such as anti-inflammatory, anti-bacterial, and anti-tumor activities, but their action on platelet aggregation has not yet been reported. Therefore, in this study we investigated the effects of licochalcones on platelet aggregation. Collagen and U46619, a thromboxane A2 receptor agonist, caused rabbit platelet aggregation, which was reversed by pretreatment with licochalcones A, C and D in concentration-dependent manners. Among these compounds, licochalcone A caused the most potent inhibitory effect on collagen-induced platelet aggregation. However, the licochalcones showed marginal inhibitory effects on thrombin or ADP-induced platelet aggregation. In addition to rabbit platelets, licochalcone A attenuated collagen-induced aggregation in human platelets. Because licochalcone A also inhibited arachidonic acid-induced platelet aggregation and production of thromboxane A2 induced by collagen in intact platelets, we further examined the direct interaction of licochalcone A with cyclooxygenase (COX)-1. As expected, licochalcone A caused an inhibitory effect on both COX-1 and COX-2 in vitro. Regarding the effect of licochalcone A on COX-1 enzyme reaction kinetics, although licochalcone A showed a stronger inhibition of prostaglandin E2 synthesis induced by lower concentrations of arachidonic acid, Vmax values in the presence or absence of licochalcone A were comparable, suggesting that it competes with arachidonic acid at the same binding site on COX-1. These results suggest that licochalcones inhibit collagen-induced platelet aggregation accompanied by inhibition of COX-1 activity

    Concentration-dependent inhibition of U46619- and collagen-induced platelet aggregation by licochalcones.

    No full text
    <p><b>(A)</b> Licochalcone A (Lico A, 100 μM), licochalcone C (Lico C, 100 μM), licochalcone D (Lico D, 100 μM) or DMSO (-) was preincubated for 5 min before addition of U46619 (3 μM), collagen (3 μg/ml) or thrombin (0.03 U/ml) in the presence of 1 mM CaCl<sub>2</sub>. Results are shown as mean±S.E.M. (*<i>P</i><0.05 compared with control, n = 3, Tukey–Kramer’s method). <b>(B)</b> Licochalcones (2–100 μM) or DMSO (control) were preincubated for 5 min before addition of U46619 (3 μM) or collagen (3 μg/ml) in the presence of 1 mM CaCl<sub>2</sub>. Results are shown as mean±S.E.M. (*<i>P</i><0.05 compared with control, n = 3–8, Dunnett’s method). <b>(C)</b> Licochalcone A (10 or 100 μM) or DMSO (control) were preincubated for 5 min before addition of collagen (3 μg/ml) in the presence of 1 mM CaCl<sub>2</sub>. Representative traces of the collagen-induced platelet aggregation with or without licochalcone A are shown.</p
    corecore